Answer:
kg.m/s
Explanation:
it is a division of a mass and a speed
As it is pushed deeper, the buoyant force on the jar will decrease. The correct option is B
<h3>What is buoyant force ?</h3>
The upward force applied to an object that is fully or partially submerged in a fluid is known as the buoyant force. Upthrust is another name for this upward thrust. A body submerged partially or completely in a fluid appears to shed weight, or to be lighter, due to the buoyant force.
The fluid under which an object is submerged exerts pressure, which is what generates the buoyancy force. Because a fluid's pressure rises with depth, the buoyancy force is always upward.
To know more about buoyant force you may visit the link:
brainly.com/question/21990136
#SPJ4
Answer:
k = 5178.8 N/m
Explanation:
As we know that spring mass system will oscillate at angular frequency given as

now we have

now the maximum acceleration of the spring block system is at its maximum compression state which is given as

here A= maximum compression of the spring
so here in order to find maximum compression of the spring we will use energy conservation as we know that initial total kinetic energy of the car will convert into spring potential energy

here we know that
v = 85 km/h

now we have


now from above equation of acceleration we have



Answer:
They don’t ‘represent’ anything, they are properties of the wave.
Depending on the type of wave, we experience them as various phenomena. For example, with a sound wave we experience frequency (or wavelength, which is just another way to describe the same property) as the pitch of the sound. We experience amplitude as the loudness of the sound, although due to the characteristics of the ear, frequency also effects perceived loudness.
If the wave is a light wave, we experience the frequency (wavelength) as the colour of the light, and the amplitude as the brightness of the light.
For many waves, we don’t perceive them at all (e.g. radio waves).
For ocean waves, frequency is the time for each peak or trough to reach us, and amplitude is how tall the wave is.
Answer:
468 m
Explanation:
So the building and the point where the laser hit the water surface make a right triangle. Let's call this triangle ABC where A is at the base of the building, B is at the top of the building, and C is where the laser hits the water surface. Similarly, the submarine, the projected submarine on the surface and the point where the laser hit the surface makes a another right triangle CDE. Let D be the submarine and E is the other point.
The length CE is length AE - length AC = 284 - 234 = 50 m
We can calculate the angle ECD:


This is also the angle ACB, so we can find the length AB:



So the height of the building is 468m