Answer:
Fluid pressure from gravity is the weight of the fluid above divided by the area it is pushing on. Fluid pressure applies in all directions. Internal pressure of an object equals the external fluid pressure, otherwise the object could be crushed. Wind and heating can also create pressure.
Explanation:
<span> Let’s determine the initial momentum of each car.
#1 = 998 * 20 = 19,960
#2 = 1200 * 17 = 20,400
This is this is total momentum in the x direction before the collision. B is the correct answer. Since momentum is conserved in both directions, this will be total momentum is the x direction after the collision. To prove that this is true, let’s determine the magnitude and direction of the total momentum after the collision.
Since the y axis and the x axis are perpendicular to each other, use the following equation to determine the magnitude of their final momentum.
Final = √(x^2 + y^2) = √(20,400^2 + 19,960^2) = √814,561,600
This is approximately 28,541. To determine the x component, we need to determine the angle of the final momentum. Use the following equation.
Tan θ = y/x = 19,960/20,400 = 499/510
θ = tan^-1 (499/510)
The angle is approximately 43.85˚ counter clockwise from the negative x axis. To determine the x component, multiply the final momentum by the cosine of the angle.
x = √814,561,600 * cos (tan^-1 (499/510) = 20,400</span>
Answer:
The total electric potential at mid way due to 'q' is 
The net Electric field at midway due to 'q' is 0.
Solution:
According to the question, the separation between two parallel plates, plate A and plate B (say) = d
The electric potential at a distance d due to 'Q' is:

Now, for the Electric potential for the two plates A and B at midway between the plates due to 'q':
For plate A,
Similar is the case with plate B:
Since the electric potential is a scalar quantity, the net or total potential is given as the sum of the potential for the two plates:


Now,
The Electric field due to charge Q at a distance is given by:

Now, if the charge q is mid way between the field, then distance is
.
Electric Field at plate A,
at midway due to charge q:

Similarly, for plate B:

Both the fields for plate A and B are due to charge 'q' and as such will be equal in magnitude with direction of fields opposite to each other and hence cancels out making net Electric field zero.
Answer:
Current through each phase Vp = 2.2A
Total three phase power Pt= 1.45kW
Power factor of the load pf = 1
Explanation:
i) Find current through each phase
Vp =220V (rms)
Z =100 Ω
I = Vp/Z
= 220/100
= 2.2A
ii) Find the total three phase power
for a resistive load, Power, P = VI
Power for each phase is given as:
P = 220 * 2.2
= 484 W
Total power TP =3* P
=484*3
= 1452W
=1.45kW
iii) Find the power factor of the load
Phase angle for a resistive load is 0.
α= 0
Hence, power factor of load = cos α
pf = cos 0
pf = 1
B) not work ,because the water would freeze