Answer:
The horizontal distance covered by the firework will be 
Explanation:
Let acceleration due to gravity on the planet be g, initial velocity of the firework be u and angle made with the horizontal be ∅.
writing equation of motion in vertical direction:


and 
therefore 
writing equation of motion in horizontal direction:


therefore the equation becomes 
therefore horizontal distance traveled =
Answer:
The induced current and the power dissipated through the resistor are 0.5 mA and
.
Explanation:
Given that,
Distance = 1.0 m
Resistance = 3.0 Ω
Speed = 35 m/s
Angle = 53°
Magnetic field 
(a). We need to calculate the induced emf
Using formula of emf

Where, B = magnetic field
l = length
v = velocity
Put the value into the formula


We need to calculate the induced current


Put the value into the formula


(b). We need to calculate the power dissipated through the resistor
Using formula of power

Put the value into the formula


Hence, The induced current and the power dissipated through the resistor are 0.5 mA and
.
Your weight on the moon given the data from the question is 110.5 N
<h3>Definition of mass and weight </h3>
Mass is simply defined as the quantity of matter present in an object. The mass of an object is constant irrespective of the location of the object.
Weight is simply defined as the gravitational pull on an object. The weight of an object varies from place to place due to gravity.
<h3>Relationship between mass and weight </h3>
Mass and weight are related according to the following equation
Weight (W) = mass (m) × Acceleration due to gravity (g)
<h3>How to determine the weight on the moon</h3>
- Mass (m) = 65 Kg
- Acceleration due to gravity on the moon (g) = 1.7 m/s²
- Weight (W) =?
W = mg
W = 65 × 1.7
W = 110.5 N
Learn more about mass and weight:
brainly.com/question/14684564
#SPJ1
Answer:
produce electronics
Explanation:
The uses of Germanium are recorded beneath: Germanium's principle use is to deliver strong state hardware, semiconductors and fiber optic frameworks. As a phosphor in fluorescent lights.
Answer:
The value of the centripetal forces are same.
Explanation:
Given:
The masses of the cars are same. The radii of the banked paths are same. The weight of an object on the moon is about one sixth of its weight on earth.
The expression for centripetal force is given by,

where,
is the mass of the object,
is the velocity of the object and
is the radius of the path.
The value of the centripetal force depends on the mass of the object, not on its weight.
As both on moon and earth the velocity of the cars and the radii of the paths are same, so the centripetal forces are the same.