Answer:
The mass defect of a deuterium nucleus is 0.001848 amu.
Explanation:
The deuterium is:
The mass defect can be calculated by using the following equation:
![\Delta m = [Zm_{p} + (A - Z)m_{n}] - m_{a}](https://tex.z-dn.net/?f=%5CDelta%20m%20%3D%20%5BZm_%7Bp%7D%20%2B%20%28A%20-%20Z%29m_%7Bn%7D%5D%20-%20m_%7Ba%7D)
Where:
Z: is the number of protons = 1
A: is the mass number = 2
: is the proton's mass = 1.00728 amu
: is the neutron's mass = 1.00867 amu
: is the mass of deuterium = 2.01410178 amu
Then, the mass defect is:
![\Delta m = [1.00728 amu + (2- 1)1.00867 amu] - 2.01410178 amu = 0.001848 amu](https://tex.z-dn.net/?f=%5CDelta%20m%20%3D%20%5B1.00728%20amu%20%2B%20%282-%201%291.00867%20amu%5D%20-%202.01410178%20amu%20%3D%200.001848%20amu)
Therefore, the mass defect of a deuterium nucleus is 0.001848 amu.
I hope it helps you!
A) For balanced chemical equation: 2HgO(s) → 2Hg(l) + O₂(g).
1) Mole ratio 1: n(HgO) : n(Hg) = 2 : 2 (1 : 1).
2) Mole ratio 2: n(HgO) : n(O₂) = 2 : 1.
3) Mole ratio 3: n(Hg) : n(O₂) = 2 : 1.
B) Balanced chemical equation: 4NH₃(g) + 6NO(g) → 5N₂(g) + 6H₂O(l).
1) Mole ratio 1: n(NH₃) : n(NO) = 4 : 6 (2 : 3).
2) Mole ratio 2: n(NH₃) : n(N₂) = 4 : 5.
3) Mole ratio 3: n(NH₃) : n(H₂O) = 4 : 6 (2 : 3).
4) Mole ratio 4: n(NO) : n(N₂) = 6 : 5.
5) Mole ratio 5: n(NO) : n(H₂O) = 6 : 6 (1 :1).
6) Mole ratio 6: n(N₂) : n(H₂O) = 5 : 6.
Answer:
30.83 M
Explanation:
17.03052 re in one mole. So, if you multiply it by 30.83, you will get 535 g of ammonia.
In fact, the detailed answer is 30.827009392549122.
Answer:
B should be the answer, and ur low-key valid lol
Explanation: