Answer:
ΔSv = 0.1075 KJ/mol.K
Explanation:
Binary solution:
∴ a: solvent
∴ b: solute
in equilibrium:
- μ*(g) = μ(l) = μ* +RTLnXa....chemical potential (μ)
⇒ Ln (1 - Xb) = ΔG/RT
∴ ΔG = ΔHv - TΔSv
⇒ Ln(1 -Xb) = ΔHv/RT - ΔSv/R
∴ Xb → 0:
⇒ Ln(1) = ΔHv/RT - ΔSv/R
∴ T = T*b....normal boiling point
⇒ 0 = ΔHv/RT*b - ΔSv/R
⇒ ΔSv = (R)(ΔHv/RT*b)
⇒ ΔSv = ΔHv/T*b
∴ T*b = 80°C ≅ 353 K
⇒ ΔSv = (38 KJ/mol)/(353 K)
⇒ ΔSv = 0.1075 KJ/mol.K
The units for molarity is moles of solute per liter of solution which means if you multiply the molarity of a solution by its volume you get how many moles of solute are in the solution. (0.75Mx0.5L=0.375mol NaCl)
Then you can multiply the moles of sodium chloride (0.375 mol) by its molar mass (58.45 g/mol) to get 21.92g of sodium chloride. That means there is 21.92 grams of sodium chloride in 500mL of 0.75M solution. I hope this helps. Let me know if anything is unclear.
Waste materials, mining and transportation of radioactive fuels, radiation emissions from nuclear sites
Salt dissolved in water is a solution, therefore
- salt is not chemically bonded to water
- the ratio of salt to water may vary
- salt and water retain their own chemical properties
<u>Explanation:</u>
Salt (sodium chloride) is formed from positive sodium ions bonded to negative chloride ions. Water can dissolve salt because the positive part of water particles attracts the negative chloride ions of salt. The water particle effects to be charged negatively near the atom of oxygen and positively near the atom of hydrogen.
Since contrasts attract, the water molecules tend to join collectively like magnets. Water is called the universal solvent since it can solve more substances than any other liquid. The salt and water retain their unique chemical properties.