1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zaharov [31]
3 years ago
11

An object travels along a straight, horizontal surface with an initial speed of 2 ms. The position of the object as a function o

f time is given in the table. Which of the following graphs represents the object’s velocity as a function of time?

Physics
1 answer:
pashok25 [27]3 years ago
3 0

Answer:

The options are not provided, so i will answer in a general way.

We know that:

The movement is along a straight horizontal surface, then we have one-dimensional motion.

The speed is 2m/s

We want a graph of position vs time.

Now, remember the relation:

Distance = Speed*Time

Then we can write the position as a function of time as:

P(t) = 2m/s*t + P0

Where t is our variable, that represents time in seconds, and P0 is the position at time t = 0seconds, we can assume that this is zero.

Then the equation is:

P(t) = 2m/s*t

And the graph is something like:

You might be interested in
Most metals are not ?
mario62 [17]
C liquid at room temperature  
4 0
3 years ago
1) A uniform wooden beam, with mass of 120 and length L = 4 m, is supported as illustrated in the figure. If the static friction
Kobotan [32]

Answer:

1(a) 55.0°

1(b) 58.3°

2(a) 10.2 N

2(b) 2.61 m/s²

3(a) 76.7°

3(b) 12.8 m/s

3(c) 3.41 s

3(d) 21.8 m/s

3(e) 18.5 m

4(a) 7.35 m/s²

4(b) 31.3 m/s²

4(c) 12.8 m/s²

Explanation:

1) Draw a free body diagram on the beam.  There are five forces:

Weight force mg pulling down at the center of the beam,

Normal force Na pushing up at point A,

Friction force Na μa pushing left at point A,

Normal force Nb pushing perpendicular to the incline at point B,

Friction force Nb μb pushing up the incline at point B.

There are 3 unknown variables: Na, Nb, and θ.  So we're going to need 3 equations.

Sum of forces in the x direction:

∑F = ma

-Na μa + Nb sin φ − Nb μb cos φ = 0

Nb (sin φ − μb cos φ) = Na μa

Nb / Na = μa / (sin φ − μb cos φ)

Sum of forces in the y direction:

∑F = ma

Na + Nb cos φ + Nb μb sin φ − mg = 0

Na = mg − Nb (cos φ + μb sin φ)

Sum of torques about point B:

∑τ = Iα

-mg (L/2) cos θ + Na L cos θ − Na μa L sin θ = 0

mg (L/2) cos θ = Na L cos θ − Na μa L sin θ

mg cos θ = 2 Na cos θ − 2 Na μa sin θ

mg = 2 Na − 2 Na μa tan θ

Substitute:

Na = 2 Na − 2 Na μa tan θ − Nb (cos φ + μb sin φ)

0 = Na − 2 Na μa tan θ − Nb (cos φ + μb sin φ)

Na (1 − 2 μa tan θ) = Nb (cos φ + μb sin φ)

1 − 2 μa tan θ = (Nb / Na) (cos φ + μb sin φ)

2 μa tan θ = 1 − (Nb / Na) (cos φ + μb sin φ)

Substitute again:

2 μa tan θ = 1 − [μa / (sin φ − μb cos φ)] (cos φ + μb sin φ)

tan θ = 1/(2 μa) − (cos φ + μb sin φ) / (2 sin φ − 2 μb cos φ)

a) If φ = 70°, then θ = 55.0°.

b) If φ = 90°, then θ = 58.3°.

2) Draw a free body diagram of each mass.  For each mass, there are four forces.  For mass A:

Weight force Ma g pulling down,

Normal force Na pushing perpendicular to the incline,

Friction force Na μa pushing parallel down the incline,

Tension force T pulling parallel up the incline.

For mass B:

Weight force Mb g pulling down,

Normal force Nb pushing perpendicular to the incline,

Friction force Nb μb pushing parallel up the incline,

Tension force T pulling up the incline.

There are four unknown variables: Na, Nb, T, and a.  So we'll need four equations.

Sum of forces on A in the perpendicular direction:

∑F = ma

Na − Ma g cos θ = 0

Na = Ma g cos θ

Sum of forces on A up the incline:

∑F = ma

T − Na μa − Ma g sin θ = Ma a

T − Ma g cos θ μa − Ma g sin θ = Ma a

Sum of forces on B in the perpendicular direction:

∑F = ma

Nb − Mb g cos φ = 0

Nb = Mb g cos φ

Sum of forces on B down the incline:

∑F = ma

-T − Nb μb + Mb g sin φ = Mb a

-T − Mb g cos φ μb + Mb g sin φ = Mb a

Add together to eliminate T:

-Ma g cos θ μa − Ma g sin θ − Mb g cos φ μb + Mb g sin φ = Ma a + Mb a

g (-Ma (cos θ μa + sin θ) − Mb (cos φ μb − sin φ)) = (Ma + Mb) a

a = -g (Ma (cos θ μa + sin θ) + Mb (cos φ μb − sin φ)) / (Ma + Mb)

a = 2.61 m/s²

Plug into either equation to find T.

T = 10.2 N

3i) Given:

Δx = 3.7 m

vᵧ = 0 m/s

aₓ = 0 m/s²

aᵧ = -10 m/s²

t = 1.25 s

Find: v₀ₓ, v₀ᵧ

Δx = v₀ₓ t + ½ aₓ t²

3.7 m = v₀ₓ (1.25 s) + ½ (0 m/s²) (1.25 s)²

v₀ₓ = 2.96 m/s

vᵧ = aᵧt + v₀ᵧ

0 m/s = (-10 m/s²) (1.25 s) + v₀ᵧ

v₀ᵧ = 12.5 m/s

a) tan θ = v₀ᵧ / v₀ₓ

θ = 76.7°

b) v₀² = v₀ₓ² + v₀ᵧ²

v₀ = 12.8 m/s

3ii) Given:

Δx = D cos 57°

Δy = -D sin 57°

v₀ₓ = 2.96 m/s

v₀ᵧ = 12.5 m/s

aₓ = 0 m/s²

aᵧ = -10 m/s²

c) Find t

Δx = v₀ₓ t + ½ aₓ t²

D cos 57° = (2.96 m/s) t + ½ (0 m/s²) t²

D cos 57° = 2.96t

Δy = v₀ᵧ t + ½ aᵧ t²

-D sin 57° = (12.5 m/s) t + ½ (-10 m/s²) t²

-D sin 57° = 12.5t − 5t²

Divide:

-tan 57° = (12.5t − 5t²) / 2.96t

-4.558t = 12.5t − 5t²

0 = 17.058t  − 5t²

t = 3.41 s

d) Find v

vₓ = aₓt + v₀ₓ

vₓ = (0 m/s²) (3.41 s) + 2.96 m/s

vₓ = 2.96 m/s

vᵧ = aᵧt + v₀ᵧ

vᵧ = (-10 m/s²) (3.41 s) + 12.5 m/s

vᵧ = -21.6 m/s

v² = vₓ² + vᵧ²

v = 21.8 m/s

e) Find D.

D cos 57° = 2.96t

D = 18.5 m

4) Given:

R = 90 m

d = 140 m

v₀ = 0 m/s

at = 0.7t m/s²

The distance to the opposite side of the curve is:

140 m + (90 m) (π/2) = 281 m

a) Find Δx and v if t = 10.5 s.

at = 0.7t

Integrate:

vt = 0.35t² + v₀

vt = 0.35 (10.5)²

vt = 38.6 m/s

Integrate again:

Δx = 0.1167 t³ + v₀ t + x₀

Δx = 0.1167 (10.5)³

Δx = 135 m

The car has not yet reached the curve, so the acceleration is purely tangential.

at = 0.7 (10.5)

at = 7.35 m/s²

b) Find Δx and v if t = 12.2 s.

at = 0.7t

Integrate:

vt = 0.35t² + v₀

vt = 0.35 (12.2)²

vt = 52.1 m/s

Integrate again:

Δx = 0.1167 t³ + v₀ t + x₀

Δx = 0.1167 (12.2)³

Δx = 212 m

The car is in the curve, so it has both tangential and centripetal accelerations.

at = 0.7 (12.2)

at = 8.54 m/s²

ac = v² / r

ac = (52.1 m/s)² / (90 m)

ac = 30.2 m/s²

a² = at² + ac²

a = 31.3 m/s²

c) Given:

Δx = 187 m

v₀ = 0 m/s

at = 3 m/s²

Find: v

v² = v₀² + 2aΔx

v² = (0 m/s)² + 2 (3 m/s²) (187 m)

v = 33.5 m/s

ac = v² / r

ac = (33.5 m/s)² / 90 m

ac = 12.5 m/s²

a² = at² + ac²

a = 12.8 m/s²

5 0
3 years ago
Two charges (q1 = 3.8*10-6C, q2 = 3.2*10-6C) are separated by a distance of d = 3.25 m. Consider q1 to be located at the origin.
Sergio039 [100]

Answer:

The distance is 1.69 m.

Explanation:

Given that,

First charge q_{1}= 3.8\times10^{-6}\ C

Second charge q_{2}=3.2\times10^{-6}\ C

Distance = 3.25 m

We need to calculate the distance

Using formula of electric field

E_{1}=E_{2}

\dfrac{kq_{1}}{x^2}=\dfrac{kq_{2}}{(d-x)^2}

\dfrac{q_{1}}{q_{2}}=\dfrac{(x)^2}{(d-x)^2}

\sqrt{\dfrac{q_{1}}{q_{2}}}=\dfrac{x}{d-x}

x=(d-x)\times\sqrt{\dfrac{q_{1}}{q_{2}}}

Put the value into the formula

x=(3.25-x)\times\sqrt{\dfrac{3.8\times10^{-6}}{3.2\times10^{-6}}}

x+x\times\sqrt{\dfrac{3.8\times10^{-6}}{3.2\times10^{-6}}}=3.25\times\sqrt{\dfrac{3.8\times10^{-6}}{3.2\times10^{-6}}}

x(1+\sqrt{\dfrac{3.8\times10^{-6}}{3.2\times10^{-6}}})=3.25\times\sqrt{\dfrac{3.8\times10^{-6}}{3.2\times10^{-6}}}

x=\dfrac{3.25\times\sqrt{\dfrac{3.8\times10^{-6}}{3.2\times10^{-6}}}}{(1+\sqrt{\dfrac{3.8\times10^{-6}}{3.2\times10^{-6}}})}

x=1.69\ m

Hence, The distance is 1.69 m.

5 0
3 years ago
A vacuum tube diode consists of concentric cylindrical electrodes, the negative cathode and the positive anode. Because of the a
DENIUS [597]

Answer:

   C = 4,174 10³ V / m^{3/4} ,  E = 7.19 10² / ∛x,    E = 1.5  10³ N/C

Explanation:

For this exercise we can calculate the value of the constant and the electric field produced,

Let's start by calculating the value of the constant C

           V = C x^{4/3}

           C = V / x^{4/3}

            C = 220 / (11 10⁻²)^{4/3}

            C = 4,174 10³ V / m^{3/4}

To calculate the electric field we use the expression

            V = E dx

             E = dx / V

             E = ∫ dx / C x^{4/3}

            E = 1 / C  x^{-1/3} / (- 1/3)

            E = 1 / C (-3 / x^{1/3})

We evaluate from the lower limit x = 0 E = E₀ = 0 to the upper limit x = x, E = E

            E = 3 / C     (0- (-1 / x^{1/3}))

            E = 3 / 4,174 10³   (1 / x^{1/3})

           E = 7.19 10² / ∛x

for x = 0.110 cm

          E = 7.19 10² /∛0.11

          E = 1.5  10³ N/C

6 0
3 years ago
Find the speed of a long distance runner who runs 30km in 6 hours
slava [35]

30mi/6hrs is a speed of 5 mph, which converts to a pace of 12 min/mi.

7 0
3 years ago
Read 2 more answers
Other questions:
  • A 3.92 cm tall object is placed in 31.3 cm in front of a convex mirror. The focal
    12·1 answer
  • A 38.0 kg child is in a swing that is attached to ropes 1.70 m long. The acceleration of gravity is 9.81 m/s 2 . Find the gravit
    13·1 answer
  • Why hydraulic system know as forcee multiplier​
    14·2 answers
  • A car moves from the point (3.0 m)x^ + (5.0 m)y^ to the point (8.0 m)x^ - (7.0 m)y^ in 2.0 s. what is the magnitude of the avera
    7·1 answer
  • 1. How much heat energy is required to raise the temperature of a 5 kg aluminium bar
    14·1 answer
  • The quantum theory of radiation reflects:
    8·1 answer
  • The question and answer options are in the photo!
    5·1 answer
  • Newtons law of gravitation is called a universal law, why?​
    12·2 answers
  • HURRYYY FASTTT PLEASEEEEE
    5·1 answer
  • Explain what happens to the path of light as it hits a piece of black paper, a glass mirror, and a glass
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!