Answer:
The law of definite proportions. I had the same question for chemistry and this is what they said was right so I got 100%.
Explanation:
The classification of it being a metal, nonmetal, or metalliod will be useful in the process of elimination to determine what it is. Then for the second test, meauring the atomin radius will narrow it down quicker to the mystery elemet's name.
Since you determined what part of the periodic table it's on, then when measuring the atomic radius, you should be able to pinpoint what the element is more surely.
Volume of Hydrogen V1 = 351mL
Temperature T1 = 20 = 20 + 273 = 293 K
Temperature T2 = 38 = 38 + 273 = 311 K
We have V1 x T2 = V2 x T1
So V2 = (V1 x T2) / T1 = (351 x 311) / 293 = 372.56
Volume at 38 C = 373 ml
The given question is incomplete. The complete question is:What is the relative atomic mass of a hypothetical element that consists isotopes in the indicated natural abundances.
Isotope mass amu Relative abundance
1 77.9 14.4
2 81.9 14.3
3 85.9 71.3
Express your answer to three significant figures and include the appropriate units.
Answer: 84.2 amu
Explanation:
Mass of isotope 1 = 77.9
% abundance of isotope 1 = 14.4% = 
Mass of isotope 2 = 81.9
% abundance of isotope 2 = 14.3% = 
Mass of isotope 3 = 85.9
% abundance of isotope 2 = 71.3% = 
Formula used for average atomic mass of an element :

![A=\sum[(77.9\times 0.144)+(81.9\times 0.143)+(85.9\times 0.713)]](https://tex.z-dn.net/?f=A%3D%5Csum%5B%2877.9%5Ctimes%200.144%29%2B%2881.9%5Ctimes%200.143%29%2B%2885.9%5Ctimes%200.713%29%5D)

Therefore, the average atomic mass of a hypothetical element that consists isotopes in the indicated natural abundances is 84.2 amu