Answer:
Explanation:
stoichiometry of C₂H₂ to H₂O is 2:2.
Number of moles of C₂H₂ = molar mass of C₂H₂
Since the molar mass of C₂H₂ is 26 g/mol.
Number of C₂H₂ moles reacted = 64.0 g / 26 g/mol = 2.46 mol.
according to a molar ratio of 2:2.
the number of H₂O moles formed = a number of C₂H₂ moles reacted.
Therefore the number of H₂O moles produced = 2.46 mol
It’s sulfur because it shows little reactivity.
2HCl (aq) + Zn²⁺ ⇒ ZnCl₂ + 2H⁺ Total Reaction
Leo goes Ger (Lose electron oxidize, Gain electron reduction)
Zn²⁺ + 2e⁻ ⇒ Zn Oxidation half-reaction
2H ⇒ 2H⁺ + 2e⁻ Reduction half-reaction
Lead is an E (element) and can be found on the periodic table.
Answer:
Qsp > Ksp, BaCO3 will precipitate
Explanation:
The equation of the reaction is;
Na2CO3 + BaBr2 -------> 2NaBr + BaCO3
Since BaCO3 may form a precipitate we can determine the Qsp of the system.
Number of moles of Na2CO3 = 0.96g/106 g/mol = 9.1 * 10^-3 moles
concentration of NaCO3 = number of moles/volume of solution = 9.1 * 10^-3 moles/10 L = 9.1 * 10^-4 M
Number of moles of BaBr2 = 0.20g/297 g/mol = 6.7 * 10^-4 moles
concentration of BaBr2 = 6.7 * 10^-4 moles/10 L = 6.7 * 10^-5 M
Hence;
[Ba^2+] = 6.7 * 10^-5 M
[CO3^2-] = 9.1 * 10^-4 M
Qsp = [6.7 * 10^-5] [9.1 * 10^-4]
Qsp = 6.1 * 10^-8
But, Ksp for BaCO3 is 5.1*10^-9.
Since Qsp > Ksp, BaCO3 will precipitate