Xylene moles =\frac{17.12}{106.16×1000}=0.00016moles=
106.16×1000
17.12
=0.00016moles
Moles of CO_2 =\frac{56.77}{44.01×1000}=0.0013CO
2
=
44.01×1000
56.77
=0.0013
Moles of H_2O= =\frac{14.53}{18.02×1000}=0.0008H
2
O==
18.02×1000
14.53
=0.0008
Moles ratios
\frac{0.0013}{0.0008}=1.625
0.0008
0.0013
=1.625
\frac{0.0008}{0.0008}=1
0.0008
0.0008
=1
Hence molecular fomula
The empirical formula is C 4H 5.
The molecular formula C8H10
Answer:
Mercury is useful in lighting because it contributes to the bulbs' efficient operation and life expectancy. Fluorescent and other mercury-added bulbs are generally more energy efficient and last longer than incandescent and other equivalent forms of lighting.
Explanation:
To balance it, it would be N2 + 3H2 ------> 2NH3.
for c) it would be 2N2 + 6H2 -------> 4NH3
Answer:
The reaction can produce 287 grams of iron(II) carbonate
Explanation:
To solve this question we must find the moles of iron(II) chloride that react. Using the chemical equation we can find the moles of iron(II) carbonate and its mass -Molar mass FeCO3: 115.854g/mol-
<em>Moles FeCl2:</em>
1.24L * (2.00mol / L) = 2.48 moles FeCl2
As 1 mol FeCl2 produce 1 mol FeCO3, the moles of FeCO3 = 2.48 moles
<em>Mass FeCO3:</em>
2.48mol * (115.854g / mol) =
<h3>The reaction can produce 287 grams of iron(II) carbonate</h3>
Answer:
BURN IT ALIVE MUHAHAHAHAHA
Explanation:
jk