Answer:
[Co(NH₃)₄(H₂O)₂]³⁺: coordination number = 6.
[Cr(EDTA)]⁻: coordination number = 6.
[Pt(NH₃)₄]²⁺: coordination number = 4.
Na[Au(Cl)₂]: coordination number = 2.
Explanation:
In this complex, Co is bonded with 4 molecules of NH₃ (with 4 coordinate bonds, one bond for each molecule) and 2 molecules of H₂O (with 2 coordinate bonds, one bond for each molecule) forming the complex with 6 coordinate bonds.
∴ coordination number = 6.
In this complex, Cr is bonded with 1 molecules of EDTA (with 6 coordinate bonds, 4 O atoms and 2 N atoms in EDTA molecule).
∴ coordination number = 6.
In this complex, Pt is bonded with 4 molecules of NH₃ (with 4 coordinate bonds, one bond for each molecule).
coordination number = 4.
In this complex, Au is bonded with 2 atoms of Cl (with 2 coordinate bonds, one bond for each atom).
coordination number = 2.
Answer:
<h3>The answer is option B</h3>
Explanation:
To calculate the number of atoms we must first calculate the number of moles
Molar mass = mass / number of moles
number of moles = mass / Molar mass
Molar mass (K) = 39.10mole
mass = 2.10g
number of moles = 2.10/ 39.10
= 0.0537mol
After that we use the formula
N = n × L
where n is the number of moles
N is the number of entities
L is the Avogadro's constant which is
6.02 × 10^23 entities
Number of K atoms is
N = 0.0537 × 6.02 × 10^13
<h3>N = 3.23×10^22 atoms of K</h3>
Hope this helps you.
http://www.atnf.csiro.au/outreach/education/senior/cosmicengine/stars_hrdiagram.html. This will give u the answer, just go to link
Answer:
the answer is A
Explanation:
because abiotic things are non-living things
Answer: In metallic bonds, the mobile electrons surrounding the positive ions are called <u><em>dipole</em></u>.