Answer:
The answer to the question is
The equilibrium partial pressure (atm) of ammonia, assuming that some solid NH₄HS remains 0.26 atm.
Explanation:
To solve the question, we write out the chemical equation as follows
NH₄HS (s) ⇄ NH₃ (g) + H₂S (g)
From the above equation, it is observed that only the gaseous products contribute to the partial pressure
Kp =PNH₃·PH₂S where at Kp = 0.070 and PNH₃, PH₂S are the partial pressures of the gases
However since the number of moles of both gases are equal, therefore by Avogadro's law PNH₃ = PH₂S
Then PNH₃ = √(0.07) = PH₂S = 0.2645 atm. ≅ 0.26 atm.
Answer:
increasing the temperature
Explanation:
it's not the 2nd one because that makes it take longer
and the 3rd and 4th one are the same thing so it can't be either.
You must know and use the formula for pH.
pH = - log [H3O+], where [H3O+] is the molar concentration of hydronium ion.
So, when pH is 8.0 => 8.0 = - log [H3O+] and you can use antilogarithm (the inverse function of logarithm) to find [H3O+], in this way:
[H3O+] = 10^-8 = 1 * 10 ^-8 M
When, pH = 7.0 =>
7.0 = - log [H3O+] => [H3O+] = 1 * 10^ -7 M
Answer: 1*10^-7 mole / liter
Answer:
this is the answer explanation of previous question. as what you say in comment i do that
1) Silicon dioxide formula: SiO2 ....... 2 is a subscript for the O atom
2) From the formula you have 1 molecula of SiO2 contains 1 atom of SiO2
3) Then, 0.100 mol of SiO2 contains 0.1 mol of Si
4) Multiply by Avogadro's number: 0.100mol * 6.022*10^23 atoms/mol= 6.02*10^22 atoms
Answer: 6.02*10^22 atoms