Answer:
The number of positive charges in nucleus of an atoms are equal to the atomic number and also positive charges are equal to the negative charges which are electrons in neutral atom.
Explanation:
An atom consist of electron, protons and neutrons. Protons and neutrons are present with in nucleus while the electrons are present out side the nucleus.
Electron:
The electron is subatomic particle that revolve around outside the nucleus and has negligible mass. It has a negative charge.
Symbol= e⁻
Mass= 9.10938356×10⁻³¹ Kg
It was discovered by j. j. Thomson in 1897 during the study of cathode ray properties.
Neutron and proton:
Neutron and proton are present inside the nucleus. Proton has positive charge while neutron is electrically neutral. Proton is discovered by Rutherford while neutron is discovered by James Chadwick in 1932.
Symbol of proton= P⁺
Symbol of neutron= n⁰
Mass of proton=1.672623×10⁻²⁷ Kg
Mass of neutron=1.674929×10⁻²⁷ Kg
All these three subatomic particles construct an atom. A neutral atom have equal number of proton and electron. In other words we can say that negative and positive charges are equal in magnitude and cancel the each other. For example if neutral atom has 6 protons than it must have 6 electrons. The sum of neutrons and protons is the mass number of an atom while the number of protons are number of electrons is the atomic number of an atom.
For example
The carbon have six protons and six neutrons so its atomic mass is 12 amu and atomic number is six.
<span>2Li⁺(aq) + Zn⁰(s) → 2Li⁰(s) + Zn²⁺(aq)
</span>2Li⁺(aq) + 2e⁻ → 2Li⁰(s)
Zn⁰(s) → Zn²⁺(aq) +2e⁻
2 electrons are transferred from atom of Zn⁰ to 2 ions of Li⁺.
Answer:
Final pressure in (atm) (P1) = 6.642 atm
Explanation:
Given:
Initial volume of gas (V) = 12.5 L
Pressure (P) = 784 torr
Temperature (T) = 295 K
Final volume (V1) = 2.04 L
Final temperature (T1) = 310 K
Find:
Final pressure in (atm) (P1) = ?
Computation:
According to combine gas law method:

⇒ Final pressure (P1) = 5,048.18877 torr
⇒ Final pressure in (atm) (P1) = 5,048.18877 torr / 760
⇒ Final pressure in (atm) (P1) = 6.642 atm
Answer:
1 mole represents 6.023×1023 particles.
1 mole of iodine atom= 6.023×1023
Given 127.0g of iodine.
no. of iodine atom = 1 mole of iodine
1mole of magnesium = 24g of Mg = 6.023×1023no.of Mg
Given 48g of Mg = 2×6.023×1023
no. of Mg = 2 moles of Mg
1 mole of chlorine atom= 6.023× 1023
no. of chlorine atom = 35.5g of chlorine atom
Given 71g of chlorine atom=2× 6.023× 1023
no. of chlorine atom = 6.023×1023
2 moles of chlorine atom.
Given that 4g of hydrogen atom.
will be equal to 4 × 6.023 × 1023
no. of atoms of hydrogen= 4 moles of hydrogen atom.
Answer:
The final temperature was 612 °C
Explanation:
Charles's law relates the volume and temperature of a certain amount of ideal gas, maintained at a constant pressure, using a constant of direct proportionality. In this law, Charles says that at constant pressure, as the temperature increases, the volume of the gas increases and as the temperature decreases, the volume of the gas decreases. That is, Charles's law is a law that says that when the amount of gas and pressure are kept constant, the ratio between volume and temperature will always have the same value:

When you want to study two different states, an initial and a final one of a gas and evaluate the change in volume as a function of temperature or vice versa, you can use the expression:

In this case:
- V1= 5.76 L
- T1= 22 °C= 295 °K (Being 0°C=273°K)
- V2=17.28 L
- T2=?
Replacing:

Solving:

T2= 885 °K = 612 °C
<u><em>The final temperature was 612 °C</em></u>