A low pressure system has lower pressure at its center than the areas around it. Winds blow towards the low pressure, and the air rises in the atmosphere where they meet. As the air rises, the water vapor within it condenses, forming clouds and often precipitation.
<u>Explanation</u>:
- Wind flow towards the low pressure and the air rises in the atmosphere. As the air increases, the water vapor within it solidifies, forming clouds and undergo precipitation. Low pressure formed in the center areas.
- The atmospheric circulations of air up and down in a low-pressure area remove a small amount of atmosphere. This usually happens between warm and cold air masses by flowing air which tries to reduce the contrast of temperature.
Answer:
Ocean, lakes and rivers. Are all liquids.
Explanation:
Ocean, lakes and rivers. Are all liquids. Snow starts off as a liquid, evaporates into a gas and camoes back as snow.
Depression of a freezing point of the solutions depends on the number of particles of the solute in the solution.
1 mol of C6H12O6 after dissolving in water still be 1 mol, because C6H12O6 does no dissociate in water.
1 mol of C2H5OH after dissolving in water still be 1 mol, because C2H5OH does no dissociate in water.
1 mol of NaCl after dissolving in water gives 2 mol of particles (ions), because NaCl is a strong electrolyte(as salt) and completely dissociates in water.
NaCl ----->Na⁺ + Cl⁻
1 mol of CH3COOH after dissolving in water gives more than 1 mol but less than 2 moles, because CH3COOH is a weak electrolyte (weak acid) and dissociates only partially.
So, most particles of the solute is going to be in the solution of NaCl,
so<span> the lowest freezing point has the aqueous solution of NaCl.</span>
Answer:
Oxygen
Explanation:
One mole of atoms of oxygen has a mass of 16 g, as 16 is the atomic weight of oxygen, and contains 6.02 X 1023 atoms of oxygen.