1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ira Lisetskai [31]
3 years ago
9

Answer the Question Correctly and get brainliest and thank you

Physics
1 answer:
PtichkaEL [24]3 years ago
3 0

Answer:

D. are made of cell

Explanation:

first , cell simply means the basic and structural unit of life ......All living organisms have cells

It could be Unicellular(amoeba), colonial form ( volvox) , filamentous form(spirogyra) or multicellular .......

You might be interested in
Particle A of charge 2.79 10-4 C is at the origin, particle B of charge -5.64 10-4 C is at (4.00 m, 0), and particle C of charge
kirill [66]

Answer:

a) 0 b) 29.9 N c) 21.7 N d) -17.4 N e) -13.0 N f) -17.4 N  g) 16.9 N

h) 24.3 N θ = 44.2º

Explanation:

a) As the electric force is exerted along the line that joins the charges, due to any of the charges A or C has non-zero x-coordinates, the force has no x components either.

So, Fcax = 0

b) Similarly, as Fx = 0, the entire force is directed along the y-axis, and is going upward, due both charges repel each other.

Fyca = k*qa*qc / rac² = (9.10⁹ N*m²/C²*(2.79)*(1.07)*10⁻⁸ C²) / 9.00 m²

Fyca = 29. 9 N

c) In order to get the magnitude of the force exerted by B on C, we need to know first the distance between both charges:

rbc² = (3.00 m)² + (4.00m)² = 25.0 m²

⇒ Fbc = k*qb*qc / rbc² = (9.10⁹ N*m²/C²*(5.64)*(1.07)*10⁻⁸ C²) / 25.0 m²

⇒ Fbc = 21.7 N

d) In order to get the x component of Fbc, we need to get the projection of Fcb over the x axis, taking into account that the force on particle C is attractive, as follows:

Fbcₓ = Fbc * cos (-θ) where θ, is the angle that makes the line of action of the force, with the x-axis, so we can write:

cos θ = x/r = 4.00 / 5.00 m =

Fcbx = 21.7*(-0.8) = -17.4 N

e) The  y component can be calculated in the same way, projecting the force over the y-axis, as follows:

Fcby = Fcb* sin (-θ) = 21.7* (-3.00/5.00) = -13.0 N

f) The sum of both x components gives :

Fcx = 0 + (-17.4 N) = -17.4 N

g) The sum of both y components gives :

Fcy = 29.9 N + (-13.0 N) = 16.9 N

h) The magnitude of the resultant electric force acting on C, can be found just applying Pythagorean Theorem, as follows:

Fc = √(Fcx)²+(Fcy)² = (17.4)² + (16.9)²\sqrt{((17.4)^{2} +(16.9)^{2}} = 24.3 N

The angle from the horizontal can be found as follows:

Ф = arc tg (16.9 / 17.4) = 44.2º

4 0
3 years ago
On his honeymoon, James Joule attempted to explore the relationships between various forms of energy by measuring the rise of te
Marizza181 [45]

Answer:

The maximum temperature rise = 0.047 °C

Explanation:

Potential Energy, P = mgh

Energy transfered, Q=mcΔT

Potential energy  = Energy transfered

mgh = mcΔT

gh = cΔT

ΔT = gh/c

ΔT = (9.81 * 20) / 4186

ΔT = 0.047 °C

8 0
3 years ago
A projectile is launched at an angle of 30 and lands 20 s later at the same height as it was launched. (a) What is the initial s
Pavlova-9 [17]

Answer:

(a) 196 m/s

(b) 490 m

(c) 3394.82 m

(d) 2572.5 m

Explanation:

First of all, let us know one thing. When an object is thrown in the air, it experiences two forces acting in two different directions, one in the horizontal direction called air resistance and the second in the vertically downward direction due to its weight. In most of the cases, while solving numerical problems, air resistance is neglected unless stated in the numerical problem. This means we can assume zero acceleration along the horizontal direction.

Now, while solving our numerical problem, we will discuss motion along two axes according to our convenience in the course of solving this problem.

<u>Given:</u>

  • Time of flight = t = 20 s
  • Angle of the initial velocity of projectile with the horizontal = \theta = 30^\circ

<u>Assume:</u>

  • Initial velocity of the projectile = u
  • R = Range of the projectile during the time of flight
  • H = maximum height of the projectile
  • D = displacement of the projectile from the initial position at t = 15 s

Let us assume that the position from where the projectile was projected lies at origin.

  • Initial horizontal velocity of the projectile = u\cos \theta
  • Initial horizontal velocity of the projectile = u\sin \theta

Part (a):

During the time of flight the displacement of the projectile along the vertical is zero as it comes to the same vertical height from where it was projected.

\therefore u\sin \theta t +\dfrac{1}{2}(-g)t^2\\\Rightarrow u\sin \theta t=\dfrac{1}{2}(g)t^2\\\Rightarrow u=\dfrac{gt^2}{2\sin \theta t}\\\Rightarrow u=\dfrac{9.8\times 20^2}{2\sin 30^\circ \times 20}\\\Rightarrow u=196\ m/s

Hence, the initial speed  of the projectile is 196 m/s.

Part (b):

For a projectile, the time take by it to reach its maximum height is equal to return from the maximum height to its initial height is the same.

So, time taken to reach its maximum height will be equal to 10 s.

And during the upward motion of this time interval, the distance travel along the vertical will give us maximum height.

\therefore H = u\sin \theta t +\dfrac{1}{2}(-g)t^2\\\Rightarrow H = 196\times \sin 30^\circ \times 10 + \dfrac{1}{2}\times(-9.8)\times 10^2\\ \Rightarrow H =490\ m

Hence, the maximum altitude is 490 m.

Part (c):

Range is the horizontal displacement of the projectile from the initial position. As acceleration is zero along the horizontal, the projectile is in uniform motion along the horizontal direction.

So, the range is given by:

R = u\cos \theta t\\\Rightarrow R = 196\times \cos 30^\circ \times 20\\\Rightarrow R =3394.82\ m

Hence, the range of the projectile is 3394.82 m.

Part (d):

In order to calculate the displacement of the projectile from its initial position, we first will have to find out the height of the projectile and its range during 15 s.

\therefore h = u\sin \theta t +\dfrac{1}{2}(-g)t^2\\\Rightarrow h = 196\times \sin 30^\circ \times 15 + \dfrac{1}{2}\times(-9.8)\times 15^2\\ \Rightarrow h =367.5\ m\\r = u\cos \theta t\\\Rightarrow r = 196\times \cos 30^\circ \times 15\\\Rightarrow r =2546.11\ m\\\therefore D = \sqrt{r^2+h^2}\\\Rightarrow D = \sqrt{2546.11^2+367.5^2}\\\Rightarrow D =2572.5\ m

Hence, the displacement from the point of launch to the position on its trajectory at 15 s is 2572.5 m.

6 0
3 years ago
A starter pistol is fired 150m away from the spectators who hear the gun 0.5s after they see it fired. How fast does sound trave
Natali [406]

Answer:

300m/s

Explanation:

speed = distance/time

150/0.5

8 0
3 years ago
The answer would be ?
Cerrena [4.2K]

Answer:

D. demand; increased

Explanation:

Demand is how much people want it.

4 0
3 years ago
Other questions:
  • Hydraulic systems utilize Pascal's principle by transmitting pressure from one cylinder (called the primary) to another (called
    10·1 answer
  • Jack is making a table to summarize his notes about the different types of scientific investigations. He places an X into the bo
    14·2 answers
  • What is an advantage of being a single-celled organism
    6·1 answer
  • A car travels at 60 mph for 10 hours. Calculate the distance it travels.
    12·2 answers
  • During an auto accident, the vehicle's airbags deploy and slow down the passengers more gently than if they had hit the windshie
    9·1 answer
  • Macy and Sam are trying to push a large box across a floor. Both girls push with an equal amount of force. The total amount they
    5·1 answer
  • The highly exothermic thermite reaction, in which aluminum reduces iron(iii) oxide to elemental iron, has been used by railroad
    14·1 answer
  • Two objects are dropped from a bridge, an interval of 1.00 s apart. What is their separation 1.00 s after the second object is r
    12·1 answer
  • A superconductor performs best at ______.
    14·1 answer
  • Describe how we know the plates once formed a supercontinent and how we know this.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!