1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Brut [27]
3 years ago
8

Wasim and his friends want to test if the solution of a substance is acidic or not. These are the tests that each of them perfor

med. Wasim: Dipped the blue litmus in the solution Akram: Dipped the red litmus in the solution Neha: Dipped both the blue and the red litmus in the solution one after other. Who among them performed a proper test ?
Chemistry
1 answer:
alex41 [277]3 years ago
3 0

Answer:

Wasim and Nehra did the Proper testing  

Explanation:

In acidic condition Blue litmus turns red

In basic condition Red litmus turns Blue

In order to test an Acidic solution we need Blue litmus.

Wasim Dipped the blue litmus in the solution : it will turn red and shows acid

Akram  Dipped the red litmus in the solution : No it will not show, it's a test for base

Neha: Dipped both the blue and the red litmus in the solution one after other.

          Blue litmus will turn red which will show Acidic nature, after that Adding Red litmus in it will not show any change as Red litmus only changes in Basic condition.

Therefore,  Wasim and Nehra did the Proper  testing  

You might be interested in
The balanced equation below represents the decomposition of potassium chlorate.
dezoksy [38]
The oxidation number of chlorine in the reactant can be determined by K ion and O ion. K ion is +1 and O ion is -2. And the Cl is +5. The gas has the greatest entropy and the solid has the least. In the production, there are solid and gas. So it has more entropy than the reactants with solid only.
6 0
4 years ago
Write the balanced reaction and solubility product expression (KSP) for dissolving silver chromate: Ag2CrO4(s). Include all char
Sonbull [250]

Answer:

2Ag⁺ (aq)  + CrO₄⁻² (aq) ⇄  Ag₂CrO₄ (s) ↓

Ksp = [2s]²  . [s] → 4s³

Explanation:

Ag₂CrO₄ → 2Ag⁺  + CrO₄⁻²

Chromate silver is a ionic salt that can be dissociated. When we have a mixture of both ions, we can produce the salt which is a precipitated.

2Ag⁺ (aq)  + CrO₄⁻² (aq) ⇄  Ag₂CrO₄ (s) ↓ Ksp

That's the expression for the precipitation equilibrium.

To determine the solubility product expression, we work with the Ksp

Ag₂CrO₄ (s)  ⇄ 2Ag⁺ (aq)  + CrO₄⁻² (aq)   Ksp

                          2 s                 s

Look the stoichiometry is 1:2, between the salt and the silver.

Ksp = [2s]²  . [s] → 4s³

 

3 0
3 years ago
Explain how the igneous rock granite forms. Then tell how the granite might become the sedimentary rock sandstone and then the m
otez555 [7]

Answer:

There are three main types of rocks: sedimentary, igneous, and metamorphic. Each of these rocks are formed by physical changes—such as melting, cooling, eroding, compacting, or deforming—that are part of the rock cycle. Sedimentary Rocks Sedimentary rocks are formed from pieces of other existing rock or organic material. There are three different types of sedimentary rocks: clastic, organic (biological), and chemical. Clastic sedimentary rocks, like sandstone, form from clasts, or pieces of other rock. Organic sedimentary rocks, like coal, form from hard, biological materials like plants, shells, and bones that are compressed into rock. The formation of clastic and organic rocks begins with the weathering, or breaking down, of the exposed rock into small fragments. Through the process of erosion, these fragments are removed from their source and transported by wind, water, ice, or biological activity to a new location. Once the sediment settles somewhere, and enough of it collects, the lowest layers become compacted so tightly that they form solid rock. Chemical sedimentary rocks, like limestone, halite, and flint, form from chemical precipitation. A chemical precipitate is a chemical compound—for instance, calcium carbonate, salt, and silica—that forms when the solution it is dissolved in, usually water, evaporates and leaves the compound behind. This occurs as water travels through Earth’s crust, weathering the rock and dissolving some of its minerals, transporting it elsewhere. These dissolved minerals are precipitated when the water evaporates. Metamorphic Rocks Metamorphic rocks are rocks that have been changed from their original form by immense heat or pressure. Metamorphic rocks have two classes: foliated and nonfoliated. When a rock with flat or elongated minerals is put under immense pressure, the minerals line up in layers, creating foliation. Foliation is the aligning of elongated or platy minerals, like hornblende or mica, perpendicular to the direction of pressure that is applied. An example of this transformation can be seen with granite, an igneous rock. Granite contains long and platy minerals that are not initially aligned, but when enough pressure is added, those minerals shift to all point in the same direction while getting squeezed into flat sheets. When granite undergoes this process, like at a tectonic plate boundary, it turns into gneiss (pronounced “nice”). Nonfoliated rocks are formed the same way, but they do not contain the minerals that tend to line up under pressure and thus do not have the layered appearance of foliated rocks. Sedimentary rocks like bituminous coal, limestone, and sandstone, given enough heat and pressure, can turn into nonfoliated metamorphic rocks like anthracite coal, marble, and quartzite. Nonfoliated rocks can also form by metamorphism, which happens when magma comes in contact with the surrounding rock. Igneous Rocks Igneous rocks (derived from the Latin word for fire) are formed when molten hot material cools and solidifies. Igneous rocks can also be made a couple of different ways. When they are formed inside of the earth, they are called intrusive, or plutonic, igneous rocks. If they are formed outside or on top of Earth’s crust, they are called extrusive, or volcanic, igneous rocks. Granite and diorite are examples of common intrusive rocks. They have a coarse texture with large mineral grains, indicating that they spent thousands or millions of years cooling down inside the earth, a time course that allowed large mineral crystals to grow.

Alternatively, rocks like basalt and obsidian have very small grains and a relatively fine texture. This happens because when magma erupts into lava, it cools more quickly than it would if it stayed inside the earth, giving crystals less time to form. Obsidian cools into volcanic glass so quickly when ejected that the grains are impossible to see with the naked eye. Extrusive igneous rocks can also have a vesicular, or “holey” texture. This happens when the ejected magma still has gases inside of it so when it cools, the gas bubbles are trapped and end up giving the rock a bubbly texture. An example of this would be pumice.

Explanation:

oh and also nice profile pic :P

5 0
3 years ago
At 25.0°c, a solution has a concentration of 3.179 m and a density of 1.260 g/ml. the density of the solution at 50.0°c is 1.249
oksano4ka [1.4K]

Answer: -

3.151 M

Explanation: -

Let the volume of the solution be 1000 mL.

At 25.0 °C, Density = 1.260 g/ mL

Mass of the solution = Density x volume

= 1.260 g / mL x 1000 mL

= 1260 g

At 25.0 °C, the molarity = 3.179 M

Number of moles present per 1000 mL = 3.179 mol

Strength of the solution in g / mol

= 1260 g / 3.179 mol = 396.35 g / mol (at 25.0 °C)

Now at 50.0 °C

The density is 1.249 g/ mL

Mass of the solution = density x volume = 1.249 g / mL x 1000 mL

= 1249 g.

Number of moles present in 1249 g = Mass of the solution / Strength in g /mol

= \frac{1249 g}{396.35 g/mol}

= 3.151 moles.

So 3.151 moles is present in 1000 mL at 50.0 °C

Molarity at 50.0 °C = 3.151 M

7 0
3 years ago
How many independent variables are allowed in an experiment
Dmitriy789 [7]

one independent variable

8 0
3 years ago
Read 2 more answers
Other questions:
  • You place a balloon in a closed chamber at STP. When the balloon doubles in size, what happens to the chamber pressure? A.) The
    12·2 answers
  • What is the full meaning of DR.HERC.​
    10·1 answer
  • The electron configuration of a neutral atom is 1s22s22p63s2. Write a complete set of quantum numbers for each of the electrons.
    6·1 answer
  • For the equilibrium, N2O4(g)<----> 2NO2(g), the equilibrium constant Kp = 0.316. Calculate the equilibrium partial pressur
    13·2 answers
  • When the equation 
    8·1 answer
  • What does electronegativity mean?
    5·1 answer
  • A neutral aluminum atom is ionized and loses 3 electrons. What is the
    13·1 answer
  • Select the correct answer.
    5·1 answer
  • Cual es la formula estructural condensada del octano??
    9·1 answer
  • PC13 ionic or covalent
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!