71.8 g of iron (III) oxide (Fe₂O₃) were produced from 3 moles of magnesium oxide (MgO).
Explanation:
We have the following chemical reaction:
2 FeCl₃ + 3 MgO → Fe₂O₃ + 3 MgCl₂
We see from the chemical reaction that 3 moles of magnesium oxide (MgO) will produce 1 mole of iron (III) oxide (Fe₂O₃).
number of moles = mass / molar weight
mass = number of moles × molar weight
mass of Fe₂O₃ = 1 × 71.8 = 71.8 g
Learn more about:
number of moles
brainly.com/question/13981579
#learnwithBrainly
Answer: Option (b) is the correct answer.
Explanation:
Since energy of reactants is less than the energy of products. Therefore, it means energy is absorbed during the reaction.
As the energy required to break the bonds in the reactants is greater than the energy released when products are formed.
Therefore, it is an endothermic reaction.
Thus, we can conclude that the statement, it is endothermic because the energy required to break bonds in the reactants is greater than the energy released when the products are formed is correct.
Answer:
4P + 5O₂ —> P₄O₁₀
Explanation:
From the question given above, we obtained:
P + O₂ —> P₄O₁₀
The above equation can be balance as illustrated below:
P + O₂ —> P₄O₁₀
There are 4 atoms of P on the right side and 1 atom on the left side. It can be balance by 4 in front of P as shown below:
4P + O₂ —> P₄O₁₀
There are 10 atoms of O on the right side and 2 atoms on the left side. It can be balance by putting 5 in front of O₂ as shown below:
4P + 5O₂ —> P₄O₁₀
Now the equation is balanced.
Answer:
The answer is "
"
Explanation:
Given equation:

Given value:





calculating the total pressure on equilibrium= 


calculating the pressure in
:


calculating the pressure in
:

calculating the pressure in
:

Calculating the Kp at 1100 K:
