The formula units in the substances are as follows:
- Br2 = 8.99 × 10^23 formula units
- MgCl2 = 1.51 × 10^24 formula units
- H2O = 2.57 × 10^24 formula units
- Fe = 2.57 × 10^24 formula units
<h3>How many moles are in 239.2 g of the given substances?</h3>
The moles of the substances are determined from their molar mass.
Molar mass of the substances is given as follows:
- Br2 = 160 g/mol
- MgCl2 = 95 g/mol
- H2O = 18 g/mol
- Fe = 56 g/mol
Formula units = mass/molar mass × 6.02 × 10^23
The formula units in the substances are as follows:
- Br2 = 239.2/160 × 6.02 × 10^23 = 8.99 × 10^23 formula units
- MgCl2 = 239.2/95 × 6.02 × 10^23 = 1.51 × 10^24 formula units
- H2O = 239.2/18 × 6.02 × 10^23 = 2.57 × 10^24 formula units
- Fe = 239.2/56 × 6.02 × 10^23 = 2.57 × 10^24 formula units
In conclusion, the number of formula units is derived from the moles and Avogadro number.
Learn more about formula units at: brainly.com/question/24529075
#SPJ1
Explanation:
The endoplasmic reticulum consists of a network of a tube-like passageway through which proteins from the ribosomes are able to be moved within a cell as the road system allows for movement throughout the city.
The balanced chemical equation is,
2Mg+2HCl→2MgCl+H2↑
<span>The object that was trying to be oxidized would end up being reduced. There would be no net reaction otherwise. The KCl would have simply melted after a long enough time and with the application of enough heat to the crucible.</span>