<h3>
Answer:</h3>
19.3 g/cm³
<h3>
Explanation:</h3>
Density of a substance refers to the mass of the substance per unit volume.
Therefore, Density = Mass ÷ Volume
In this case, we are given;
Mass of the gold bar = 193.0 g
Dimensions of the Gold bar = 5.00 mm by 10.0 cm by 2.0 cm
We are required to get the density of the gold bar
Step 1: Volume of the gold bar
Volume is given by, Length × width × height
Volume = 0.50 cm × 10.0 cm × 2.0 cm
= 10 cm³
Step 2: Density of the gold bar
Density = Mass ÷ volume
Density of the gold bar = 193.0 g ÷ 10 cm³
= 19.3 g/cm³
Thus, the density of the gold bar is 19.3 g/cm³
Write as a proportion, showing the relationship of both given information:
68.0g 0.3g
---------- = -----------
1L x ( your answer)
Cross multiply: 68.0g× X = 0.3g × 1L
68.0g (X)= 0.3g/L
Solve for X by dividing both sides by 68.0 g
68.0g (X) = 0.3g/L
------------- ------------------
68.0g 68.0g
Then enter into calculator 0.3/68 and that will be your solution. Make sure you round up.
For each of the situations below, state whether it describes erosion, weathering, or possibly both.
Answer:
Erosion
Explanation:
The blowing away of the top layer of the soil at a Michigan farm is best described as scenario that shows wind erosion.
Erosion is the removal of the top layer of the earth on which plant grows. In short is the washing away of soil by stream or blowing away by wind.
When soil is blow away, it is a pure case of erosion. The process of erosion usually follows weathering or sometime occurs together with it.
Weathering is the physical disintegration and chemical decomposition of rocks to form sediments and soils.
Often times, the process of weathering and erosion occurs together. It is loose weathering products that are carried away during erosion.
In the soil layer at Michigan, the process of erosion by wind is current taking place by ablation.
Answer:
When heat is added to a substance, the molecules and atoms vibrate faster. As atoms vibrate faster, the space between atoms increases. The motion and spacing of the particles determines the state of matter of the substance. The end result of increased molecular motion is that the object expands and takes up more space.
Ca + 2HCl = CaCl₂ + H₂
c=4.50 mol/l
v=2.20 l
n(HCl)=cv
m(Ca)/M(Ca)=n(HCl)/2
m(Ca)=M(Ca)cv/2
m(Ca)=40g/mol·4.50mol/l·2.20l/2=198 g
198 grams of Ca are needed