Answer
given,
force = 94 lb
weight of crate = 220 lb
Assuming the static friction be equal = 0.47
kinetic friction = 0.36
Maximum force applied to move the object is when object is just start to move.
F = μ N
F = 0.47 x 220
F = 103.4 lb
As the frictional force is more than applied then the object will not move.
so, the friction force will be equal to the force applied on the object that is equal to 94 lb.
hence, the direction of force will left.
Answer:
Diameter of Newton’s 5th ring = 0.30 cm
Diameter of Newton’s 15th ring = 0.62 cm
Diameter of Newton’s 25th ring = ?
From Newton’s rings experiment we infer that
D2n+m − D2n = 4λmR
For the 5th and 15th rings we have
D215 − D25 = 4λ * 10 * R _______ (1) (m = 10)
For 15th and 25th rings
D225 − D215 = 4λ * 10 * R _______ (2) (m = 10)
We equate the two derivatives
Equation (2) = Equation (1)
D225 − D215 = D215 − D25
D225 = 2D215 – D25
Substituting the values into the equation
D225 = 2 * 0.62 * 0.62 – 0.3 * 0.3 =0.6788 cm2
D25 = 0.8239 cm
Answer:
i'm good, hru hope ur staying safe
Explanation:
The pertinent equation here is F=ma. You haven't shared the mass of the box, so I will use M to represent that mass.
Then F = M(<span>2.3 m/s^2) (answer)</span>
Answer:
The gravitational force between m₁ and m₂, is approximately 1.06789 × 10⁻⁶ N
Explanation:
The details of the given masses having gravitational attractive force between them are;
m₁ = 20 kg, r₁ = 10 cm = 0.1 m, m₂ = 50 kg, and r₂ = 15 cm = 0.15 m
The gravitational force between m₁ and m₂ is given by Newton's Law of gravitation as follows;

Where;
F = The gravitational force between m₁ and m₂
G = The universal gravitational constant = 6.67430 × 10⁻¹¹ N·m²/kg²
r₂ = 0.1 m + 0.15 m = 0.25 m
Therefore, we have;

The gravitational force between m₁ and m₂, F ≈ 1.06789 × 10⁻⁶ N