Answer:
dx/Dt x B . x =0
Explanation:
Let's calculate the work and the magnetic force, the expression for magnetic force is
F = qv x B
Bold indicate vector quantities, the expression for the job is
W = F. X
Let's replace in this equation
W = q v x B . X
The definition of speed is
v = dX / dt
With what work is left
W = q dX / dt x B . X
As we can see the vector product gives us a vector perpendicular to dX and its scalar product by X of zero
Second part
The speed a vector and although the magnitude is constant the change of direction implies a change in the speed.
Let's calculate the magnitudes of speed (speed)
F = qv B sin θ
F = ma
q v B sin θ = ma
a = qvB / m senT
This acceleration is perpendicular to the magnetic field and the velocity, so it does not change if magnitude but its direction, it is directed to the center of the circle.
| v | = q vB/m sin θ
Answer:
The pressure is 
Explanation:
From the question we are told that
The gauge pressure at the mouth is 
The radius of the column is 
The speed of the liquid outside the body is 
The area of the column is 
The area inside the mouth 
Generally according to continuity equation

=> 
=> 
=> 
So

=> 
=> 
substituting values


Now the height of inside the mouth is 
Now the height of the column is 
Generally according to Bernoulli's equation
![p_1 = [\frac{1}{2} \rho v_2^2 + h_2 \rho g +p_2] -[\frac{1}{2} \rho * v_1^2 + h_1 \rho g ]](https://tex.z-dn.net/?f=p_1%20%3D%20%20%5B%5Cfrac%7B1%7D%7B2%7D%20%20%5Crho%20v_2%5E2%20%2B%20h_2%20%5Crho%20g%20%2Bp_2%5D%20-%5B%5Cfrac%7B1%7D%7B2%7D%20%5Crho%20%2A%20v_1%5E2%20%2B%20h_1%20%5Crho%20g%20%5D)
Now
which is the density of water
is the gauge pressure of the atmosphere which is zero
So
![p_1 = [(0.5 * 1000 * (3.1)^2) +(0.008 * 1000 * 9.8) + 0]-](https://tex.z-dn.net/?f=p_1%20%3D%20%20%5B%280.5%20%2A%201000%20%2A%20%283.1%29%5E2%29%20%2B%280.008%20%2A%201000%20%2A%209.8%29%20%2B%200%5D-)

Answer:
h >5/2r
Explanation:
This problem involves the application of the concepts of force and the work-energy theorem.
The roller coaster undergoes circular motion when going round the loop. For the rider to stay in contact with the cart at all times, the roller coaster must be moving with a minimum velocity v such that at the top the rider is in a uniform circular motion and does not fall out of the cart. The rider moves around the circle with an acceleration a = v²/r. Where r = radius of the circle.
Vertically two forces are acting on the rider, the weight and normal force of the cart on the rider. The normal force and weight are acting downwards at the top. For the rider not to fall out of the cart at the top, the normal force on the rider must be zero. This brings in a design requirement for the roller coaster to move at a minimum speed such that the cart exerts no force on the rider. This speed occurs when the normal force acting on the rider is zero (only the weight of the rider is acting on the rider)
So from newton's second law of motion,
W – N = mv²/r
N = normal force = 0
W = mg
mg = ma = mv²/r
mg = mv²/r
v²= rg
v = √(rg)
The roller coaster starts from height h. Its potential energy changes as it travels on its course. The potential energy decreases from a value mgh at the height h to mg×2r at the top of the loop. No other force is acting on the roller coaster except the force of gravity which is a conservative force so, energy is conserved. Because energy is conserved the total change in the potential energy of the rider must be at least equal to or greater than the kinetic energy of the rider at the top of the loop
So
ΔPE = ΔKE = 1/2mv²
The height at the roller coaster starts is usually higher than the top of the loop by design. So
ΔPE =mgh - mg×2r = mg(h – 2r)
2r is the vertical distance from the base of the loop to the top of the loop, basically the diameter of the loop.
In order for the roller coaster to move smoothly and not come to a halt at the top of the loop, the ΔPE must be greater than the ΔKE at the top.
So ΔPE > ΔKE at the top. The extra energy moves the rider the loop from the top.
ΔPE > ΔKE
mg(h–2r) > 1/2mv²
g(h–2r) > 1/2(√(rg))²
g(h–2r) > 1/2×rg
h–2r > 1/2×r
h > 2r + 1/2r
h > 5/2r
Answer:
Vf= 7.29 m/s
Explanation:
Two force act on the object:
1) Gravity
2) Air resistance
Upward motion:
Initial velocity = Vi= 10 m/s
Final velocity = Vf= 0 m/s
Gravity acting downward = g = -9.8 m/s²
Air resistance acting downward = a₁ = - 3 m/s²
Net acceleration = a = -(g + a₁ ) = - ( 9.8 + 3 ) = - 12.8 m/s²
( Acceleration is consider negative if it is in opposite direction of velocity )
Now
2as = Vf² - Vi²
⇒ 2 * (-12.8) *s = 0 - 10²
⇒-25.6 *s = -100
⇒ s = 100/ 25.6
⇒ s = 3.9 m
Downward motion:
Vi= 0 m/s
s = 3.9 m
Gravity acting downward = g = 9.8 m/s²
Air resistance acting upward = a₁ = - 3 m/s²
Net acceleration = a = g - a₁ = 9.8 - 3 = 6.8 m/s²
Now
2as = Vf² - Vi²
⇒ 2 * 6.8 * 3.9 = Vf² - 0
⇒ Vf² = 53. 125
⇒ Vf= 7.29 m/s
1.A) 4.9 m
AL2006 Ace
The instant it was dropped, the ball had zero speed.
After falling for 1 second, its speed was 9.8 m/s straight down (gravity).
Its AVERAGE speed for that 1 second was (1/2) (0 + 9.8) = 4.9 m/s.
Falling for 1 second at an average speed of 4.9 m/s, is covered 4.9 meters.
ANYTHING you drop does that, if air resistance doesn't hold it back.
Read more on Brainly.com - brainly.com/question/11776597#readmore
2 idk sorry