(a) The voltage that is produced in the secondary circuit is 1,800 V.
(b) The current that flows in the secondary circuit is 1 A.
<h3>Voltage in the secondary coil</h3>
Np/Ns = Vp/Vs
where;
- Np is number of turns in primary coil
- Ns is number of turns in secondary coil
- Vp is voltage in primary coil
- Vs is voltage in secondary coil
100/1500 = 120/Vs
Vs = (120 x 1500)/100
Vs = 1,800 V
<h3>Current in the secondary coil</h3>
Is/Ip = Vp/Vs
where;
- Is is secondary current
- Ip is primary current
Is = (IpVp)/Vs
Is = (15 x 120)/1800
Is = 1 A
Thus, the voltage that is produced in the secondary circuit is 1,800 V.
Learn more about voltage here: brainly.com/question/14883923
#SPJ1
Answer:
Right shoe
Explanation:
Let the mass and velocity of incoming puck be m and v respectively.
Momentum of the colliding puck will be mv
In case of first case , the momentum of puck becomes zero so change in momentum after collision with left shoe
= mv - 0 = mv
If time duration of collision be t
rate of change of momentum
= mv / t
This is the force exerted by puck on the left shoe .
Now let us consider collision with right shoe
momentum after collision with right shoe
- mv
change in momentum
= mv - ( - mv ) = 2mv
If time duration of collision be t
rate of change of momentum
= 2mv / t
This is the force exerted by puck on the right shoe .
Since the force on the right shoe is more , this shoe will have greater speed
after collision.
Answer:
Explanation:
We shall apply length contraction einstein's relativistic formula to calculate the length observed by observer on the earth . For the observer , increased length will be observed for an observer on the earth


L= 2.05
The length will appear to be 2.05 m . and width will appear to be .5 m to the observer on the spaceship. . It is so because it is length which is moving parallel to the direction of travel. Width will remain unchanged.
Answer: Solution W and Y solution have more solubility than X and Z
Solutions are homogeneous mixtures of two or more components. By uniform mix we mean that its structure and properties are the same in the whole mix. Generally, the component which is present in the largest quantity is known as solvent. Solvent determines the physical condition in which the solution exists. In addition to the solvent, one or more component present in the solution is called solutes. In this unit we will only consider binary solutions (i.e., with two components)
The structure of the solution can be described by expressing its concentration. The latter can either be expressed qualitatively or quantitatively. For example, in qualitatively we can say that the solution is diluted (i.e., relatively small amounts of solubility) or it is concentrated (i.e., relatively rarely sighs). But in real life such details may be very confusing and thus require a quantitative description of the solution. There are several ways that we can quantitatively describe the concentration of solutions. (i) Mass Percentage (W / W): The mass percentage of a component of the solution is defined as: mass of the component = mass of the component in the solution = 100 Total mass of the solution .For example, if by mass A solution is described by 10% glucose in water, it means that 10 grams of glucose dissolved in 90 grams of water, resulting in 100 grams of solution. The concentration described by a large percentage of the population is usually used in industrial chemical applications. For example, the commercial bleaching solution contains 3.62 mass percentages of sodium hypochlorite in water. (ii) Volume Percentage (V / V): Volume Percentage is defined as: Total Volume of Component Volume 100 (component) Volume% of Component
Explanation:
You have to upload this in the area of mathematicians..!