Answer:
5746.0 mL.
Explanation:
We can use the general law of ideal gas:<em> PV = nRT.</em>
where, P is the pressure of the gas in atm.
V is the volume of the gas in L.
n is the no. of moles of the gas in mol.
R is the general gas constant,
T is the temperature of the gas in K.
If n and P are constant, and have two different values of V and T:
<em>V₁T₂ = V₂T₁</em>
<em></em>
V₁ = 6193.0 mL, T₁ = 62.3°C + 273 = 335.3 K.
V₂ = ??? mL, T₂ = 38.1°C + 273 = 311.1 K.
<em>∴ V₂ = V₁T₂/T₁ </em>= (6193.0 mL)(311.1 K)/(335.3 K) = <em>5746.0 mL.</em>
Rutherford's gold foil experiment proved that there was a small, dense, positively charged nucleus at the center, which contained most of the mass of the atom. Which contained electrons orbiting the nucleus.
Explanation:
Given problem:
Find the molar mass of:
SO₃ and C₁₀H₈
Solution:
The molar mass of a compound is the mass in grams of one mole of the substance.
To solve this, we are going to add the individual atomic masses of the elements in the compound;
Atomic mass;
S = 32g/mol; O = 16g/mol; C = 12g/mol and H = 1g/mol
For SO₃;
= 32 + 3(16)
= 32 + 48
= 80g/mol
For C₁₀H₈
= 10(12) + 8(1)
= 120 + 8
= 128g/mol
pV = nRT
p = nRT/V
p= 1 x 0.08205 x 1000/ 2
p = 41.025 Pa
Edit: The unit should be atm instead of Pa, as pointed out by a nice human being.