is the type of orbital hybridization of a central atom that has one lone pair and bonds to four other atoms.
<h3>What is
orbital hybridization?</h3>
In the context of valence bond theory, orbital hybridization (or hybridisation) refers to the idea of combining atomic orbitals to create new hybrid orbitals (with energies, forms, etc., distinct from the component atomic orbitals) suited for the pairing of electrons to form chemical bonds.
For instance, the valence-shell s orbital joins with three valence-shell p orbitals to generate four equivalent sp3 mixes that are arranged in a tetrahedral configuration around the carbon atom to connect to four distinct atoms.
Hybrid orbitals are symmetrically arranged in space and are helpful in the explanation of molecular geometry and atomic bonding characteristics. Usually, atomic orbitals with similar energies are combined to form hybrid orbitals.
Learn more about hybridization
brainly.com/question/22765530
#SPJ4
15.3 litres of water will be produced if we take 1.7 litres of Hydrogen
Explanation:
Let's take a look over synthesis reaction;
<u> </u>
<u />
<u>Balancing the chemical reaction;</u>
<u> </u>
<u />
Thus, 2 moles of hydrogen molecules are required to form 2 moles of water molecules.
<u>Equating the molarity;</u>
<u />
= 
(Since, the molecular mass of hyd and water is 2 and 18 respectively)
x=
x= 15.3 litres.
Thus,15.3 L of water will be produced if we take 1.7 litres of Hydrogen in a synthesis reaction.
Answer:
0.479 M or mol/L
Explanation:
So Molarity is moles/litres of solution...often written as M=mol/L
So here we are given grams of BaCl2 which we have to convert to moles. To convert to moles of BaCl2 we have to divide 63.2 g BaCl2 by molar mass of BaCl2 which is 208.23 g/mol so you get 63.2/208.23 = 0.3035 moles of BaCl2
Second step is converting the 634mL to litres by simply dividing by 1000 because we know 1 litre has 1000ml so 634/1000 = 0.634L
Now we just plug these guys in our molarity formula M=mol/L
M= 0.3035/0.634 = 0.479 M or mol/L