<h2>
Answer:442758.96N</h2>
Explanation:
This problem is solved using Bernoulli's equation.
Let
be the pressure at a point.
Let
be the density fluid at a point.
Let
be the velocity of fluid at a point.
Bernoulli's equation states that
for all points.
Lets apply the equation of a point just above the wing and to point just below the wing.
Let
be the pressure of a point just above the wing.
Let
be the pressure of a point just below the wing.
Since the aeroplane wing is flat,the heights of both the points are same.

So,
Force is given by the product of pressure difference and area.
Given that area is
.
So,lifting force is 
Answer:
spring compressed is 0.724 m
Explanation:
given data
mass = 1.80 kg
spring constant k = 2 × 10² N/m
initial height = 2.25 m
solution
we know from conservation of energy is
mg(h+x) = 0.5 × k × x² ...................1
here x is compression in spring
so put here value in equation 1 we get
1.8 × 9.8 × (2.25+x) = 0.5 × 2× 10² × x²
solve it we get
x = 0.724344
so spring compressed is 0.724 m
It would be funny because . I will not be good
Answer:
410 m
Explanation:
Given:
v₀ = 20.5 m/s
a = 0 m/s²
t = 20 s
Find: Δx
Δx = v₀ t + ½ at²
Δx = (20.5 m/s) (20 s) + ½ (0 m/s²) (20 s)²
Δx = 410 m
The definition of incidence is In geometric optics, the angle of incidence is the angle between a ray incident on a surface and the line perpendicular to the surface at the point of incidence, called the normal.