It's 3.6 meters per second less than my speed was
at 4:19 PM last Tuesday.
Does that tell you anything ?
Why not ?
The best and most correct answer among the choices provided by your question is the fourth option or letter D. Trade winds blow towards the equator because t<span>he Equator receives the most heat energy.
</span>The surface air that flows from these subtropical high-pressure belts toward the Equator is deflected toward the west in both hemispheres by the Coriolis effect. These winds blow<span> predominantly from the northeast in the Northern Hemisphere and from the southeast in the Southern Hemisphere.
I hope my answer has come to your help. Thank you for posting your question here in Brainly.
</span>
Not really the volume of a container is simply length X width X depth so just how big the container unless the water is pressurized by some sort of weight or if the containers air pressure is lowered
Answer:
Current will decrease.
Explanation:
When we increase the number of stepping in transformer, the voltage will increase as its is directly proportional to the number of turn of stepping. Thus as the voltage will increase, current will decrease. As per the equation of ideal transformer, E1 / E2 = I2 / I1
E1 and E2 are the voltages in primary and secondary winding and I1 and I2 are the current.
As the number of turns will be increased more inevitable losses will be generated that dissipates heat thus warming the primary.
Though the conservation of energy is obeyed but losses occur in this scenario hence step-up transformers cannot be used to create free energy.
Answer: 39.8 μC
Explanation:
The magnitude of the electric field generated by a capacitor is given by:

d is the distance between the plates.
For a capacitor, charge Q = CV where C is the capacitance and V is the voltage.

where A is the area of the plate and ε₀ is the absolute permittivity.
substituting, we get

It is given that the magnitude of the electric field that can exist in the capacitor before air breaks down is, E = 3 × 10⁶ N/C.
radius of the plates of the capacitor, r = 69 cm = 0.69 m
Area of the plates, A = πr² = 1.5 m²
Thus, the maximum charge that can be placed on disks without a spark is:
Q = E×ε₀×A
⇒ Q = 3 × 10⁶ N/C × 8.85 × 10⁻¹² F/m × 1.5 m² = 39.8 × 10⁻⁶ C = 39.8 μC.