Answer: 53.09Hz
Explanation:
The fundamental frequency of an ideal taut string is:
Fn= n/2L(√T/μ)
Where:
F= frequency per second (Hz)
T= Tension of the string (cm/s sqr)
L= Length of the string (cm)
μ= Linear density or mass per unit length of the string in cm/gm
√T/μ= square root of T divided by μ
It is important to note:
Note: Typically, tension would be in newtons, length in meters and linear density in kg/m, but those units are inconvenient for calculations with strings. Here, the smaller units are used.
F1= 1/2(376cm)(0.01/1) × (√574/(0.036g/cm)(0.1kg/m÷1g/cm)
F1= 0.1329 × 399.30
= 53.09Hz
Answer:46.05 mm
Explanation:
Given

speed 
allowable shear stress 
Power is given by



From Torsion Formula

where J=Polar section modulus
T=Torque
=shear stress
For square cross section

where a=side of square

Substituting the values in equation 1



3.5m is ur answer ask for more questions anytime
The slope of the distance/time graph is the speed of the moving object.
So the graph for a fast moving object will have a greater slope than the
graph for a slower moving object has.
Answer:
Approximately
(assuming that the acceleration due to gravity is
.)
Explanation:
Let
denote the first piston's contact area with the fluid. Let
denote the second piston's contact area with the fluid.
Similarly, let
and
denote the size of the force on the two pistons. Since the person is placing all her weight on the first piston:
.
Since both pistons fit into cylinders, the two contact surfaces must be circles. Keep in mind that the area of a square is equal to
times its radius, squared:
.
.
By Pascal's Law, the pressure on the two pistons should be the same. Pressure is the size of normal force per unit area:
.
For the pressures on the two pistons to match:
.
,
, and
have all been found. The question is asking for
. Rearrange this equation to obtain:
.
Evaluate this expression to obtain the value of
, which represents the force on the piston with the larger diameter:
.