1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Katarina [22]
2 years ago
9

what is the change in thermal energy of 1.00 kg of water that is raised from 20.0 degrees Celsius to boiling point?​

Physics
1 answer:
statuscvo [17]2 years ago
8 0

Answer: I think the answer would be A. Maybe.

Explanation: hope this helps I’m sorry if I got it wrong.

You might be interested in
Function of a simple pendulum​
Misha Larkins [42]

Answer:

A pendulum is a mechanical machine that creates a repeating, oscillating motion. A pendulum of fixed length and mass (neglecting loss mechanisms like friction and assuming only small angles of oscillation) has a single, constant frequency. This can be useful for a great many things.

From a historical point of view, pendulums became important for time measurement. Simply counting the oscillations of the pendulum, or attaching the pendulum to a clockwork can help you track time. Making the pendulum in such a way that it holds its shape and dimensions (in changing temperature etc.) and using mechanisms that counteract damping due to friction led to the creation of some of the first very accurate all-weather clocks.

Pendulums were/are also important for musicians, where mechanical metronomes are used to provide a notion of rhythm by clicking at a set frequency.

The Foucault pendulum demonstrated that the Earth is, indeed, spinning around its axis. It is a pendulum that is free to swing in any planar angle. The initial swing impacts an angular momentum in a given angle to the pendulum. Due to the conservation of angular momentum, even though the Earth is spinning underneath the pendulum during the day-night cycle, the pendulum will keep its original plane of oscillation. For us, observers on Earth, it will appear that the plane of oscillation of the pendulum slowly revolves during the day.

Apart from that, in physics a pendulum is one of the most, if not the most important physical system. The reason is this - a mathematical pendulum, when swung under small angles, can be reasonably well approximated by a harmonic oscillator. A harmonic oscillator is a physical system with a returning force present that scales linearly with the displacement. Or, in other words, it is a physical system that exhibits a parabolic potential energy.

A physical system will always try to minimize its potential energy (you can accept this as a definition, or think about it and arrive at the same conclusion). So, in the low-energy world around us, nearly everything is very close to the local minimum of the potential energy. Given any shape of the potential energy ‘landscape’, close to the minima we can use Taylor expansion to approximate the real potential energy by a sum of polynomial functions or powers of the displacement. The 0th power of anything is a constant and due to the free choice of zero point energy it doesn’t affect the physical evolution of the system. The 1st power term is, near the minimum, zero from definition. Imagine a marble in a bowl. It doesn’t matter if the bowl is on the ground or on the table, or even on top of a building (0th term of the Taylor expansion is irrelevant). The 1st order term corresponds to a slanted plane. The bottom of the bowl is symmetric, though. If you could find a slanted plane at the bottom of the bowl that would approximate the shape of the bowl well, then simply moving in the direction of the slanted plane down would lead you even deeper, which would mean that the true bottom of the bowl is in that direction, which is a contradiction since we started at the bottom of the bowl already. In other words, in the vicinity of the minimum we can set the linear, 1st order term to be equal to zero. The next term in the expansion is the 2nd order or harmonic term, a quadratic polynomial. This is the harmonic potential. Every higher term will be smaller than this quadratic term, since we are very close to the minimum and thus the displacement is a small number and taking increasingly higher powers of a small number leads to an even smaller number.

This means that most of the physical phenomena around us can be, reasonable well, described by using the same approach as is needed to describe a pendulum! And if this is not enough, we simply need to look at the next term in the expansion of the potential of a pendulum and use that! That’s why each and every physics students solves dozens of variations of pendulums, oscillators, oscillating circuits, vibrating strings, quantum harmonic oscillators, etc.; and why most of undergraduate physics revolves in one way or another around pendulums.

Explanation:

7 0
2 years ago
a lead block drops its temperature by 5.90 degrees celsius when 427 J of heat are removed from it. what is the mass of the block
Airida [17]

Answer:

577g

Explanation:

Given parameters:

Temperature change = 5.9°C

Amount of heat lost = 427J

Unknown:

Mass of the block = ?

Solution:

The heat capacity of a body is the amount of heat required to change the temperature of that body by 1°C.

                H =  m c Ф

  H is the heat capacity

 m  is the mass of the block

  c is the specific heat capacity

   Ф is the temperature change

Specific heat capacity of lead is 0.126J/g°C

   m = H / m Ф

   m = \frac{427}{0.126 x 5.9}  = 577g

Mass of the lead block is 577g

7 0
2 years ago
The viscosities of several liquids are being compared. All the liquids are poured down a slope with equal path lengths. The liqu
Vladimir [108]

Answer:

Move slowly and reach bottom later.

Explanation:

Viscosity is termed as the thickness or consistency of any liquid or semi liquid. It is related to the internal friction of the substance.

When several liquids are poured down with equal path lengths then the liquid will high viscosity will reach the bottom latter while one with less viscosity.

The internal friction of the molecules tends to keep them together making its consistency more thick. Thus when it will slope down from a certain height it will take more time to reach down.

5 0
3 years ago
When 10 N force applied at 30 degrees to the end of a 20 cm handle of a wrench, it was just able to loosen the nut. What magnitu
fredd [130]

Answer:

<h2>5N</h2>

Explanation:

To get the magnitude of the force would require to just loosen the nut, if the force apply perpendicularly at the end of the handle, we will have to resolve the force perpendicular to the wrench. Torque is the turning effect of a body or force about a point. It is similar to moments.

Torque = Force * radius

Note that the force must be perpendicular to the wrench. On resolving the force perpendicularly to the wrench, we will have to resolve the force to the vertical.

Fy = Fsinθ

Fy = 10sin30°

Fy = 10 * 0.5

Fy = 5N

<em>Torque = Fy * r</em>

<em>Given Fy = 5N and r = 20cm = 0.2m</em>

<em>Torque = 5 * 0.2</em>

<em>Torque = 1Nm</em>

<em />

<em>Hence the magnitude of the force would require to just loosen the nut, if the force apply perpendicularly at the end of the handle is 5N</em>

3 0
3 years ago
A device for training astronauts and jet fighter pilots is designed to rotate the trainee in a horizontal circle of radius 11.0
kvv77 [185]

The velocity of the trainee is 29 m/s or 0.42 rev/s

<h3>Further explanation</h3>

Acceleration is rate of change of velocity.

\large {\boxed {a = \frac{v - u}{t} } }

\large {\boxed {d = \frac{v + u}{2}~t } }

<em>a = acceleration (m / s²)v = final velocity (m / s)</em>

<em>u = initial velocity (m / s)</em>

<em>t = time taken (s)</em>

<em>d = distance (m)</em>

Centripetal Acceleration of circular motion could be calculated using following formula:

\large {\boxed {a_s = v^2 / R} }

<em>a = centripetal acceleration ( m/s² )</em>

<em>v = velocity ( m/s )</em>

<em>R = radius of circle ( m )</em>

Let us now tackle the problem!

<u>Given:</u>

Radius of horizontal circle = R = 11.0 m

Force Felt by the Trainee = F = 7.80w

<u>Unknown:</u>

Velocity of Rotation = v = ?

<u>Solution:</u>

F = ma

F = m\frac{v^2}{R}

7.80w = m\frac{v^2}{R}

7.80mg = m\frac{v^2}{R}

7.80g = \frac{v^2}{R}

7.80 \times 9.8 = \frac{v^2}{11.0}

v^2 = 840.84

v \approx 29 ~m/s

\omega = \frac{v}{R}  → in rad/s

\omega = \frac{v}{2 \pi R}  → in rev/s

\omega = \frac{29}{2 \pi \times 11.0}

\omega \approx 0.42 ~ rev/s

<h3>Learn more</h3>
  • Velocity of Runner : brainly.com/question/3813437
  • Kinetic Energy : brainly.com/question/692781
  • Acceleration : brainly.com/question/2283922
  • The Speed of Car : brainly.com/question/568302
  • Uniform Circular Motion : brainly.com/question/2562955
  • Trajectory Motion : brainly.com/question/8656387

<h3>Answer details</h3>

Grade: High School

Subject: Physics

Chapter: Circular Motion

Keywords: Velocity , Driver , Car , Deceleration , Acceleration , Obstacle , Speed , Time , Rate , Circular , Ball , Centripetal

6 0
3 years ago
Read 2 more answers
Other questions:
  • Please answer these two questions ASAP!! Will mark brainliest and give points!
    10·2 answers
  • Which of the following is a vector quantity?
    9·1 answer
  • Which describes the movement of a fluid during convection?
    12·2 answers
  • A 32.5 g cube of aluminum initially at 45.8 °C is submerged into 105.3 g of water at 15.4 °C. What is the final temperature of b
    10·1 answer
  • Any help is appreciated! ​
    12·1 answer
  • What objects can be seen from earth because they producde there own light? 
    14·1 answer
  • An electromagnetic wave is traveling straight down toward the center of the Earth. At a certain moment in time the electric fiel
    10·1 answer
  • dopasuj wartości pracy z ramki do przedstawionych sytuacji a następnie wyraź tę pracę w dżulach uwaga jedna wartość pracy nie bę
    15·2 answers
  • Please answer it fast and correctly​
    8·1 answer
  • What is gravitonal force
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!