Its mass and net force acting on it
There are a lot of things about this whole statement that bother me,
but I'm pretty sure you're not interested in those. You just want a word
to glue onto the end and complete the statement. OK. Use "inertia".
Given parameters:
Initial velocity = 0m/s
Acceleration = 2.857m/s²
Time = 15.5s
Unknown:
Final speed of the car = ?
Solution:
We use one of the motion equations to solve this problem;
V = U + at
Where V is the final velocity
U is the initial velocity
a is the acceleration
t is the time taken
V = 0 + 2.857 x 15.5 = 44.28m/s
<h2>
Answer:The more precisely you know the position of a particle, the less well you can know the momentum of the particle</h2>
The Heisenberg uncertainty principle was enunciated in 1927. It postulates that the fact that each particle has a wave associated with it, imposes <u>restrictions on the ability to determine its position and speed at the same time. </u>
In other words:
It is impossible to measure simultaneously (according to quantum physics), and with absolute precision, the value of the position and the momentum (linear momentum) of a particle.
<h2>So, the greater certainty is seeked in determining the position of a particle, the less is known its linear momentum and, therefore, its mass and velocity. </h2><h2 />
In fact, even with the most precise devices, the uncertainty in the measurement continues to exist. Thus, in general, the greater the precision in the measurement of one of these magnitudes, the greater the uncertainty in the measure of the other complementary variable.