Answer:
See the answers below.
Explanation:
to solve this problem we must make a free body diagram, with the forces acting on the metal rod.
i)
The center of gravity of the rod is concentrated in half the distance, that is, from the end of the bar to the center there is 40 [cm]. This can be seen in the attached free body diagram.
We have only two equilibrium equations, a summation of forces on the Y-axis equal to zero, and a summation of moments on any point equal to zero.
For the summation of forces we will take the forces upwards as positive and the negative forces downwards.
ΣF = 0

Now we perform a sum of moments equal to zero around the point of attachment of the string with the metal bar. Let's take as a positive the moment of the force that rotates the metal bar counterclockwise.
ii) In the free body diagram we can see that the force acts at 18 [cm] of the string.
ΣM = 0
![(15*9) - (18*W) = 0\\135 = 18*W\\W = 7.5 [N]](https://tex.z-dn.net/?f=%2815%2A9%29%20-%20%2818%2AW%29%20%3D%200%5C%5C135%20%3D%2018%2AW%5C%5CW%20%3D%207.5%20%5BN%5D)
Data Analysis and Conclusion
Answer:
(a) 1 : 2
(b) same
Explanation:
Let the mass of puck A is m and the mass of puck B is 2 m.
initial speed for both the pucks is same as u and the distance is same for both is s.
let the tension is T for same.
The kinetic energy is given by

(a) As the speed is same, so the kinetic energy depends on the mass.
So, kinetic energy of A : Kinetic energy of B = m : 2m = 1 : 2
(b) A the distance s same so the final velocities are also same.
Answer:
It would be PE=16kg * 9.8 m/s^2 * 1m = 160 J
Explanation:
The person who asked this question ended up answering his own question so I'm here to let you know all that the answer was founded by the person whos posted the question himself full credit goes to him :)