Answer:
At one atmosphere and twenty-five degrees Celsius, could you turn it into a liquid by cooling it down? Um, and the key here is that the triple point eyes that minus fifty six point six degrees Celsius and it's at five point eleven ATMs. So at one atmospheric pressure, there's no way that you're ever going to reach the liquid days. So the first part of this question is the answer The answer to the first part of a question is no. How could you instead make the liquid at twenty-five degrees Celsius? Well, the critical point is at thirty-one point one degrees Celsius. So you know, if you're twenty-five, if you increase the pressure instead, you will briefly by it, be able to form a liquid. And if you continue Teo, you know, increase the pressure eventually form a salad, so increasing the pressure is the second part. If you increase the pressure of co two thirty-seven degrees Celsius, will you ever liquefy? No. Because then, if you're above thirty-one point one degrees Celsius in temperature. You'LL never be able to actually form the liquid. Instead, you'LL only is able Teo obtain supercritical co too, which is really cool thing. You know, they used supercritical sio tu tio decaffeinated coffee without, you know, adding a solvent that you'LL be able to taste, which is really cool. But no, you can't liquefy so two above thirty-one degrees Celsius or below five-point eleven atmospheric pressures anyway, that's how I answer this question. Hope this helped :)
The correct answer is Oxyanion Nitrite. Oxyanion is referred to as an ion which contains one or more oxygen atoms that are bonded to another chemical element. It has a generic formula of <span>A. </span>x<span>O </span>z− <span>y, wherein A, stands for a chemical element, while O, stands for an Oxygen atom</span>
Answer:An atom
Explanation:
Because molecules more spread out and have things that connnect them and are not bunched up togoether
And Atoms are all packed up like in the picture
Hope this helps!:D
Answer is: solution A has 2,57 time greater pH value than solution B.<span>
</span>Concentration of [H⁺] in solution A is than 370x.
pH = -log[H⁺].
pH(solution A) = -log(370x).
pH(solution b) = -log(x).
pH(solution A) / pH(solution B) = -log(370x) / -log(x).
pH(solution A) / pH(solution B) = 2,57.
<span>The gas that is formed is a different state of matter from the baking soda and lemon juice. The lemon juice has a different odor or smell than the gas. There is no color in the gas, while the lemon juice is yellow, and the baking soda is white.
^^^^^ hope this helps you! :) </span>