Answer: As the temperature of a molecular system increases, the kinetic energy of molecules also increase. Also as the temperature of a molecular system decreases, the kinetic energy of the molecules will also decrease.
Explanation:
James Clerk Maxwell developed the kinetic-molecular theory (KMT) of gases. In this theoey, five assumptions concerning an ideal gas was made. One of the them was that," the average kinetic energy of the gas molecules is proportional to the temperature of the gas". This simply means that a s the temperature of a molecular system increases, the kinetic energy of molecules also increase. Also as the temperature of a molecular system decreases, the kinetic energy of the molecules will also decrease.
Also another scientist known as Rudolf Clausius incorporated energy into the kinetic theory. He proposed that heat is a form of energy that affects the temperature of matter by changing the motion of molecules in matter.
Heat is defined as the flow of energy which is caused by difference in temperature.
In conclusion, when the temperature of a system is increased, the collision of the molecules with one another and the walls of their container increases as more molecules gain more heat energy at higher temperature. While as the temperature of the system decreases, the collision of the molecules will also decrease as molecules lose heat energy at lower temperature.
Answer: Option (D) is the correct answer.
Explanation:
Valence shell is the shell present on the outermost core of an atom and electrons present in the valence shell are known as valence electrons.
If an atom has completely filled valence shell then it means the atom is not reactive in nature because it is already stable.
But when an atom has less than eight electrons in its valence shell then it means to attain stability the atom will readily attract electrons towards itself.
As the given element 1 has 8 electrons in its valence shell. Hence, it is not reactive in nature but element 2 has 6 valence electrons. So, in order to attain stability element 2 will readily attract 2 electrons from a donor atom.
Thus, we can conclude that element 2 is more reactive because it does not have a full valence shell, so it will attract electrons.
<u>Question in English : </u>
<span>
<em>An atom X has 8 neutrons and its atomic number equals 8. Knowing that this atom is isotopes of Y, which has mass number 18, answer: What is the number of neutrons in atom Y?</em>
</span><span><u>Answer :</u>
</span>Isotopes are defined as the atoms which have same number of
protons but different number of neutrons of same element. Since the proton
number is same, the atomic number also same. Hence the atomic number of Y is 8.
Mass number = atomic number + neutron number
18 = 8 + neutron number
Neutron number = 10
Hence, there are 10 neutrons in Y.
When you see a long dash joining two elements in the structural formula of a chemical molecule you can assume that the chemical bonds in the compound are simple bonds.
In the representation of chemical molecules long dashes are used to represent simple bonds since these bonds are longer than double and triple bonds, which are represented by = and ≡ respectively.
Answer:
1.05 mol
Explanation:
Step 1: Given data
- Molarity of sulfuric acid (M): 1.325 M (1.325 mol/L)
- Volume of solution (V): 395 mL (0.395 L)
Step 2: Calculate the moles of sulfuric acid (n)
We will use the following expression.
M = n/V
n = M × V
n = 1.325 mol/L × 0.395 L = 0.523 mol
Step 3: Calculate the moles of H⁺
H₂SO₄ dissociates completely according to the following equation.
H₂SO₄ ⇒ 2 H⁺ + SO₄²⁻
The molar ratio of H₂SO₄ to H⁺ is 1:2. The moles of H⁺ are 2/1 × 0.523 mol = 1.05 mol.