Answer:
Explanation:
In case of oil slick a thin layer of oil is formed on water . This thin layer creates a rainbow of colour . The phenomenon is due to interference of light waves , one reflected from the upper surface of oil and the other reflected from the lower surface of the oil.
For formation of bright colour
2 μ t = ( 2n + 1 ) λ / 2
μ is refractive index of oil , t is thickness of oil layer λ is wave length of light falling on the layer .
given μ = 1.2 , λ = 750 x 10⁻⁹ ,
2 x 1.2 t = ( 2n + 1 ) 750 x 10⁻⁹ / 2
For minimum thickness n = 0
2.4 t = 375 x 10⁻⁹
t = 156.25 n m
B ) If the refractive index of layer of medium below oil is less than that of oil , the condition of formation of colour changes
The new condition is
2 μ t = n λ
2 x 1.5 t = 750 nm , n = 1 for minimum wavelength .
t = 250 nm
C ) Light mostly transmitted means dark spot is formed at that point .
For that to be observed from water side , the condition is
2 μ t = ( 2n + 1 ) λ / 2
λ = 4μ t / ( 2n + 1 )
For maximum wavelength n = 0
λ = 4μ t
= 4 x 1.5 x 200 nm
= 1200 nm .
like dioxyribonucleic acid? if so then that's DNA
Answer:
the previous correct answer is b
Explanation:
When the circuit is closed in the system, a current is induced that follows the lenz law, which opposes the change that is occurring and therefore the coil increases and the idicidal current in the ring must reach the maximum oppositing is the current of the coil, so quiet force is repulsion
Consequently, the previous correct answer is b
Answer:
The wavelength range is always used to know the probable material present
Explanation:
The wavelength variation from with the concentration shows the type of material in as much the Spectrometer is well initialized before running the sample. The peaks interval may have effect on band gap.
If a mass m is attached to an ideal massless spring and has a period of t, then the period of the system when the mass is 2m is
.
Calculation:
Step-1:
It is given that a mass m is attached to an ideal massless spring and the period of the system is t. It is required to find the period when the mass is doubled.
The time it takes an object to complete one oscillation and return to its initial position is measured in terms of a period, or T.
It is known that the period is calculated as,

Here m is the mass of the object, and k is the spring constant.
Step-2:
Thus the period of the system with the first mass is,

The period of the system with the second mass is,

Then the period of the system with the second mass is
times more than the period of the system with the first mass.
Learn more about period of a spring-mass system here,
brainly.com/question/16077243
#SPJ4