The kinetic energy of an object is directly proportional to its mass and the square of its velocity
KE = 1/2 (mv²)
KE = Kinetic Energy
m = mass in kg
v = velocity in m/s
Given:
m = .8 kg
v = 11.2 m/s
Substitute:
KE = 1/2 (.8)(11.2²)
KE = 50.18 J
Electrostatic potential energy of a system of charge is given by

here we have
= two charges of different magnitudes
r = distance between charges
so here we can see that electrostatic potential energy will depends upon the product of two charges and inversely depends upon the distance between the two charges
So here we can say that the electrostatic potential energy of two charges will be same and equal to each other
This year is 60 years since I learned this stuff, and one of the things I always remembered is the formula for the distance a dropped object falls:
D = 1/2 A T²
Distance = (1/2) (acceleration) (time²)
The reason I never forgot it is because it's SO useful SO often. You really should memorize it. And don't bury it too deep in your toolbox ... you'll be needing it again very soon. (In fact, if you had learned it the first time you saw it, you could have solved this problem on your own today.)
The problem doesn't tell us what planet this is happening on, so let's make it easy and just assume it's on Earth. Then the 'acceleration' is Earth gravity, and that's 9.8 m/s² .
In 5 seconds:
D = 1/2 A T²
D = (1/2) (9.8 m/s²) (5 sec)²
D = (4.9 m/s²) (25 sec²)
D = 122.5 meters
In 6 seconds:
D = 1/2 A T²
D = (1/2) (9.8 m/s²) (6 sec)²
D = (4.9 m/s²) (36 sec²)
D = 176 meters
<span>Example Problems. Kinetic Energy (KE = ½ m v2). 1) The velocity of a car is 65 m/s and its mass is 2515 kg. What is its KE? 2) If a 30 kg child were running at a rate of 9.9 m/s, what is his KE? Practice Problems. IN THIS ORDER…. Page 2: #s 6, 7, 8, 5. Potential Energy. An object can store energy as the result of its position.</span><span>
</span>
The correct answer is B. The safety only prevents you from pulling the trigger, but does not stop the pin from striking the primer. For example, if you drop the firearm, the pin may hit the primer and fire the firearm. It is always responsible to keep the firearm pointed in a safe direction so that if this happens, no consequences come out of it.