Answer:
Explanation:
Oxygen molecules and Nitrogen molecules forms in a very similar way. The attraction between particles of oxygen is great due to its very high electronegativity value. Oxygen has a higher electronegative value compared to nitrogen.
Electronegativity of an atom is the relative tendency with which atoms of an element attracts valence electrons in a chemical bond. Valence electrons are used in forming chemical bonds. They can be transferred from one atom to the other or they can be shared.
Oxygen is the second most electronegative atom on the periodic table. To form a bond, it shares the valence electrons in order for its octet to be complete. Pull for the valence electrons between the contributing atoms is very strong due to their large electronegative values. This pull is stronger compared to that between nitrogen atoms.
Answer:
Purpose: To become familiar with the techniques for separation of amixture of solids.
Explanation:
a mixture of pure substances. If you have a mixture of tennis ballsand marbles (not pure substances by the way), it would be easy toseparate the mixture. However, it is more difficult to separate asand (also not a pure substance) and salt mixture. Even with verygood tweezers and a magnifying glass, it would be extremelytedious. You could take advantage of the fact that salt dissolvesin water and sand does not. To separate iron powder from an ironand sand mixture you can take advantage of the magnetic propertiesof iron and separate the mixture.
To summarize a complete procedure for separating a mixture ofseveral substances, it is best to prepare a flow chart. A flowchartis a schematic representation of an algorithm or a stepwiseprocess, showing the steps as boxes of various kinds, and theirorder by connecting these with arrows. Flowcharts are used indesigning or documenting a process.
Bromine has the following electron configuration: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p5. categorize the electrons in each. Answer for video: The video player is loaded.
On the periodic chart, row 5, column 7, is where you can find a chemical element that was identified in 1811. It has a proton count of 53 and an atomic mass of 126.9. Iodine's atom, then, contains 53 electrons in the following configuration: 1s2, 2s2, 2p6, 3s2, 3d10, 4p6, 5s2, 4d10, 5p5 (Kr 4d10 5s2 5p5). Cu Z = 29 has an electrical arrangement of 1s2 2s2 2p6 3s2 3p6 3d10 4s1. Copper (Co) has the following electron configuration: 1s2 2s2 2p6 3s3 3p6 4s2 3d7. If a chemist were to refer to Copper by its subshell, they would abbreviate this notation to "3d7."
To learn more about electrons please click on below link
brainly.com/question/1255220
#SPJ4