Cumulus, stratus, and cirrus, there's many more but these are the main ones ^^
Buffers - mixtures of conjugate acid and conjugate base at ±1 pH unit from pH = pKa. Resistant to changes in pH in response to small additions of H+ or OH-. ... Polyprotic acids - dissociation of each H+ can be treated separately if the pKa values are different
This problem could be solved easily using the Henderson-Hasselbach equation used for preparing buffer solutions. The equation is written below:
pH = pKa + log[(salt/acid]
Where salt represents the molarity of salt (sodium lactate), while acid is the molarity of acid (lactic acid).
Moles of salt = 1 mol/L * 25 mL * 1 L/1000 mL = 0.025 moles salt
Moles of acid = 1 mol/L* 60 mL * 1 L/1000 mL = 0.06 moles acid
Total Volume = (25 mL + 60 mL)*(1 L/1000 mL) = 0.085 L
Molarity of salt = 0.025 mol/0.085 L = 0.29412 M
Molarity of acid = 0.06 mol/0.085 L = 0.70588 M
Thus,
pH = 3.86 + log(0.29412/0.70588)
pH = 3.48
Answer:
Yes
Explanation:
The virtue that tungsten is metal it means that it does conduct electricity. Tungsten does conduct electricity currents quite well, such as when compared to iron and nickel. It is, however, not a good conductor as compared to other metals though it does get the job done.
The volume of H₂ evolved at NTP=0.336 L
<h3>Further explanation</h3>
Reaction
Decomposition of NH₃
2NH₃ ⇒ N₂ + 3H₂
conservation mass : mass reactants=mass product
0.28 NH₃= 0.25 N₂ + 0.03 H₂
2 g H₂ = 22.4 L
so for 0.03 g :
