Answer:
Im pretty sure that 5N to the Right is correct answer
Answer:
C. how the size of a magnet affects the strength of its magnetic pull on objects.
Explanation:
"Magnetic force" is <em>inversely proportional to distance squared. </em>This is also related to the size of a magnet. The bigger the size, the bigger the domain it occupies and the stronger the magnetic field. However, this is not often the case and it largely depends on the types of magnets.
In the situation above, Jazelle wanted to determine how her five different-sized magnet affect the strength of their magnetic pull on the paper clips. In order to do this, she tried to<em> measure the distance</em>. The<em> closer the distance</em>, the <em>higher the magnetic field</em> and the stronger the strength. The farther the distance, the<em> lower the magnetic field</em> and the <em>weaker the strength.</em>
So, this explains the answer.
Answer:
39.72 g
Explanation:
Given data:
Mass of CsF = 15.2 g
Mass of XeF₆ = 260 g
Mass of Cs[XeF₇] = ?
Solution:
Chemical reaction:
CsF + XeF₆ → Cs[XeF₇]
Number of moles of CsF:
Number of moles = mass/ molar mass
Number of moles = 15.2 g/151.9 g/mol
Number of moles = 0.1 mol
Number of moles of XeF₆ :
Number of moles = mass/ molar mass
Number of moles = 260 g/245.28 g/mol
Number of moles = 1.06 mol
Now we will compare the moles of Cs[XeF₇] with both reactants.
CsF : Cs[XeF₇]
1 : 1
0.1 : 0.1
XeF₆ : Cs[XeF₇]
1 : 1
1.06 ; 1.06
Number of moles of Cs[XeF₇] produce by CsF are less so it will limiting reactant and limit the yield of Cs[XeF₇].
Mass of Cs[XeF₇]:
Mass = number of moles × molar mass
Mass = 0.1 mol × 397.2 g/mol
Mass = 39.72 g
I think your anwser ahould be b!
Answer:Protons carry a positive electrical charge and they alone determine the charge of the nucleus. Adding or removing protons from the nucleus changes the charge of the nucleus and changes that atom's atomic number. For example, adding a proton to the nucleus of an atom of hydrogen creates an atom of helium and thats your answer
Explanation:
yurrrrrrr