<em>y</em> - 1/<em>z</em> = 1 ==> <em>y</em> = 1 + 1/<em>z</em>
<em>z</em> - 1/<em>x</em> = 1 ==> <em>z</em> = 1 + 1/<em>x</em>
==> <em>y</em> = 1 + 1/(1 + 1/<em>x</em>) = 1 + <em>x</em>/(<em>x</em> + 1) = (2<em>x</em> + 1)/(<em>x</em> + 1)
<em>x</em> - 1/<em>y</em> = <em>x</em> - (<em>x</em> + 1)/(2<em>x</em> + 1) = (2<em>x</em> ² - 1)/(2<em>x</em> + 1) = 1
==> 2<em>x</em> ² - 1 = 2<em>x</em> + 1
==> 2<em>x</em> ² - 2<em>x</em> - 2 = 0
==> <em>x</em> ² - <em>x</em> - 1 = 0
==> <em>x</em> = (1 ± √5)/2
If you start solving for <em>z</em>, then for <em>x</em>, then for <em>y</em>, you would get the same equation as above (with <em>y</em> in place of <em>x</em>), and the same thing happens if you solve for <em>x</em>, then <em>y</em>, then <em>z</em>. So it turns out that <em>x</em> = <em>y</em> = <em>z</em>.
2p-14=4(p+5)
Step 1, parentheses
2p-14=4p+20
Subtract 20 from each side of the equation
2p-34=4p
Subtract 2p from each side
-34=2p
Divide each side by 2
-17=p
Answer:
Step-by-step explanation:
Circumference= πd = 27 cm
d = 27/π = 8.6 cm
Answer: Approximately d = 208.72
============================================================
Work Shown:
Make sure your calculator is in radian mode
A quick way to check is to compute cos(pi) and you should get -1
cos(angle) = adjacent/hypotenuse
cos(x) = 200/d
cos(0.29) = 200/d
d*cos(0.29) = 200
d = 200/cos(0.29)
d = 208.715135166392 which is approximate
d = 208.72
I rounded to two decimal places since x is rounded in that manner as well. Round however else you need if your teacher instructs.
Answer:
The equation for the object's height s at time t seconds after launch is s(t) = –4.9t2 + 19.6t + 58.8, where s is in meters. When does the object strike the ground.
Step-by-step explanation: