Explanation:
The Simple Pendulum. A simple pendulum is defined to have a point mass, also known as the pendulum bob, which is suspended from a string of length L with negligible mass ((Figure)). Here, the only forces acting on the bob are the force of gravity (i.e., the weight of the bob) and tension from the string.
hope it helps you
You have to solve this by using the equations of motion:
u=3
v=0
s=2.5
a=?
v^2=u^2+2as
0=9+5s
Giving a=-1.8m/s^2
Then using the equation:
F=ma
F is the frictional force as there is no other force acting and its negative as its in the opposite direction to the direction of motion.
-F=25(-1.8)
F=45N
Then use the formula:
F=uR
Where u is the coefficient of friction, R is the normal force and F is the frictional force.
45=u(25g)
45=u(25*10)
Therefore, the coefficient of friction is 0.18
Hope that helps
Answer:
<h3>The answer is 2.15 m/s²</h3>
Explanation:
The acceleration of an object given it's mass and the force acting on it can be found by using the formula

where
f is the force
m is the mass
From the question we have

We have the final answer as
<h3>2.15 m/s²</h3>
Hope this helps you
Answer:
Depends.
Explanation:
Whether the object is going left or right, the speed will stay the same until friction eventually stops it. <em>However, </em>if, for example, we're talking about an object going straight before veering right, then yes, speed <em>does</em> matter. An object will normally have to speed up or slow down momentarily when changing direction to keep itself sustained on the ground.
So, honestly? It really depends on what we're talking about!
Hope this helped!
Source(s) used: None.