Answer:
Explanation:
Since the roundabout is rotating with uniform velocity ,
input power = frictional power
frictional power = 2.5 kW
frictional torque x angular velocity = 2.5 kW
frictional torque x .47 = 2.5 kW
frictional torque = 2.5 / .47 kN .m
= 5.32 kN . m
= 5 kN.m
b )
When power is switched off , it will decelerate because of frictional torque .
Both vectors should be declared to have the same number of elements.
vector<int> personName(50); vector<int> personAge(50)
Vector is a quantity that has both magnitude and direction. It is typically represented by an arrow whose direction is the same as that of the quantity and whose length is proportional to the quantity's magnitude. Although a vector has magnitude and direction, it does not have position like a point.
Learn more about Vectors here:
brainly.com/question/13322477
#SPJ4
Answer:
P = 7196 [kPa]
Explanation:
We can solve this problem using the expression that defines the pressure depending on the height of water column.
P = dens*g*h
where:
dens = 1028 [kg/m^3]
g = 10 [m/s^2]
h = 700 [m]
Therefore:
P = 1028*10*700
P = 7196000 [Pa]
P = 7196 [kPa]
Hahahahaha. Okay.
So basically , force is equal to mass into acceleration.
F=ma
so when F=ma , we get acceleration=6m/s/s
Force is doubled.
Mass is 1/3 times original.
2F=1/3ma
Now , we rearrange , and we get 6F=ma
So , now for 6 times the original force , we get 6 times the initial acceleration.
So new acceleration = 6*6= 36m/s/s
For this problem, we use the derived equations for rectilinear motion at constant acceleration. The equations used for this problem are:
a = (v - v₀)/t
2ax = v² - v₀²
where
a is the acceleration
x is the distance
v is the final velocity
v₀ is the initial velocity
t is the time
The solution is as follows;
a = (60mph - 30 mph)/(3 s * 1 h/3600 s)
a = 36,000 mph²
2(36,000 mph²)(x) = 60² - 30²
Solving for x,
x = 0.0375 miles