It is the product of the mechanical advantages of the simple machines that make up
Answer:
Position of object is;
s(t) = 4t³/3 + 3t + 1
Explanation:
We are told that the velocity has an expression;
v(t) = 3.00 m/s + ( 4.00 m/s³)t²
Now, to get the expression for the position(s(t)) of the object, we have to integrate the velocity expression. Thus;
s(t) = ∫3 + 4t²
s(t) = 3t + 4t³/3 + c
Now, we were told that at x = 1.00 m, time t = 0.000 s
Thus, plugging the values in;
1 = 3(0) + 4(0³/3) + c
c = 1
Thus,the expression for the position of the object is;
s(t) = 4t³/3 + 3t + 1
(a) James has the most momentum which is 294 kgm/s.
(b) The resultant force acting on Basma is 90.78 N.
(c) The time taken for James to stop is 3.2 seconds.
<h3>
Momentum of each person</h3>
Momentum of James: P = mv = 98 x 3 = 294 kgm/s
Momentum of Basma: P = mv = 59 x 4 = 236 kgm/s
<h3>Resultant force of Basma</h3>
F = ma = mv/t = P/t = 236/2.6 = 90.78 N
<h3>Time for James to stop</h3>
F = P/t
t = P/F
t = 294/90.78
t = 3.2 s
Learn more about momentum here: brainly.com/question/7538238
#SPJ1
Answer:
Explanation:
The maximum efficient power plant will be the plant based on carnot cycle whose efficiency is given by the following formula
Efficiency = (T₁ - T₂) / T₁
T₁ is temperature of hot reservoir and T₂ is temperature of cold reservoir.
Putting the given values
efficiency of power plant = (35 - 5) / (273 + 35 )
= 30 / 308
= .097
= 9.7 %