The ideal gas equation is pV = nRT
From that you can derive several equations, depending on which variables are fixed.
1) When n and T are fixed:
pV = nRT = constant
pV = constant => p1 V1 = p2 V2 => p1 / V2 = p2 / V1 ---> Boyle's Law
2) When n and V are constant:
p / T = nR/V = constant
p / T = constant => p1 / T1 = p2 / T2 ----> Gay - Lussac's Law
3) when n and p are constant
V / T = nR/p = constant
V / T = constant => V1 / T1 = V2 / T2 ---> Charles' Law
4) When only n is constant
pV / T = nR = constant
pV / T = constant => p1 V1 / T1 = p2 V2 / T2 ----> Combined gas law.
There you have the four equations that agree with the ideal gas law.
Answer:
Option-A (<span> It would increase from bottom left to top right) is the correct answer.
Explanation:
As we know converting solids into liquids and converting liquids into gases require energy. This energy provided increases the energy of the state and its particles start moving with higher velocities. Therefore, the energy of solids will be lower than liquids and gases respectively. While, liquids have greater energy than solids but less energy than gases. And, gases are the most energetic than solids and liquids.</span>
Nobody on here is going to write a entire cer for you
In sure u will do great and the answer will be right