A pure substance has "one set of universal properties". This means they have some of the universal properties in common.
<h3>The definition of universal property</h3>
A characteristic that describes some structures up to an isomorphism is known as a universal property in mathematics, more specifically in category theory.
As a result, independent of the construction technique used, some objects can be described using universal properties. For example, one can define polynomial rings as derived from the field of their coefficients, rational numbers as derived from integers, real numbers as derived from integers, and rational numbers as derived from real numbers. 
All of these definitions can be made in terms of universal properties. In particular, the concept of universal property offers a simple demonstration of the equality of any real number structures, requiring only that they satisfy the same universal property.
<h3>
What is the universal property of all substances?</h3>
Diamagnetism is a feature that all substances share.
To learn more about Diamagnetism click on the link below:
brainly.com/question/22078990
#SPJ9
 
        
             
        
        
        
Answer:
The answer to your question is below
Explanation:
Atomic mass = 65.39 g
Searching this number in the periodic table we find that the element is Zinc.
Then:
# of Protons = 30
# of neutrons = atomic mass - # of protons 
                        = 65.39 - 30 
                         = 35.39 
# of electrons = # of protons = 30
 
        
             
        
        
        
Answer : The value of 
 for this reaction is, 
Explanation :
The given chemical reaction is:

Now we have to calculate value of 
.

![\Delta G^o=[n_{HCH_3CO_2(g)}\times \Delta G^0_{(HCH_3CO_2(g))}]-[n_{CH_3OH(g)}\times \Delta G^0_{(CH_3OH(g))}+n_{CO(g)}\times \Delta G^0_{(CO(g))}]](https://tex.z-dn.net/?f=%5CDelta%20G%5Eo%3D%5Bn_%7BHCH_3CO_2%28g%29%7D%5Ctimes%20%5CDelta%20G%5E0_%7B%28HCH_3CO_2%28g%29%29%7D%5D-%5Bn_%7BCH_3OH%28g%29%7D%5Ctimes%20%5CDelta%20G%5E0_%7B%28CH_3OH%28g%29%29%7D%2Bn_%7BCO%28g%29%7D%5Ctimes%20%5CDelta%20G%5E0_%7B%28CO%28g%29%29%7D%5D)
where,
 = Gibbs free energy of reaction = ?
n = number of moles
 = -389.8 kJ/mol
 = -161.96 kJ/mol
 = -137.2 kJ/mol
Now put all the given values in this expression, we get:
![\Delta G^o=[1mole\times (-389.8kJ/mol)]-[1mole\times (-163.2kJ/mol)+1mole\times (-137.2kJ/mol)]](https://tex.z-dn.net/?f=%5CDelta%20G%5Eo%3D%5B1mole%5Ctimes%20%28-389.8kJ%2Fmol%29%5D-%5B1mole%5Ctimes%20%28-163.2kJ%2Fmol%29%2B1mole%5Ctimes%20%28-137.2kJ%2Fmol%29%5D)

The relation between the equilibrium constant and standard Gibbs, free energy is:

where,
 = standard Gibbs, free energy  = -89.4 kJ/mol = -89400 J/mol
R = gas constant  = 8.314 J/L.atm
T = temperature  = 
 = equilibrium constant = ?
Now put all the given values in this expression, we get:


Thus, the value of 
 for this reaction is, 
 
        
             
        
        
        
Answer:
5. Please Kemi, be careful not to place your feet on the lava flowing down from the mountain.
6. A Ore canbe defined as a natural solid material gotten from the earth,  which a metal or valuable mineral can be extracted from.
7. Diamond.
8. Fracture
9. Molten Magma
10. Natural
11. In-organic
12. Solid
13. Crystal structures
14. Definite Chemical Composition
15. Metallic
16. Non-Metallic
17. Energy Minerals
Explanation: