The molecular mass of a 2.66g sample of gas at a temperature of pressure of 845torr and occupying a volume of 0.70L is 84.16g/mol.
<h3>How to calculate molecular mass?</h3>
The molecular mass can be calculated by first calculating the number of moles using the following formula:
PV = nRT
Where;
- P = pressure
- V = volume
- n = no of moles
- R = gas law constant
- T = temperature
1.112 × 0.7 = n × 0.0821 × 300
0.7784 = 24.63n
n = 0.032mol
molecular mass = 2.66g ÷ 0.032mol
molecular mass = 84.16g/mol
Therefore, the molecular mass of a 2.66g sample of gas at a temperature of pressure of 845torr and occupying a volume of 0.70L is 84.16g/mol.
Learn more about molar mass at: brainly.com/question/14122402
#SPJ1
Answer:
Chewing in the mouth breaks food into small pieces.
Explanation:
Hope this is one of the answer choices!
Answer:
They would be to heavy and you would be really stiff
Explanation:
100.3kcal of heat will be absorbed.
2moles of NO absorb 43kcal.
I mole of NO weighs 14 +16 = 30g so 2 moles weigh 60g.
So 60g absorb 43kcal
So 1g absorb 43/60 kcal
So 136g absorb (43/60) x 136 = 97.47 kcal
Nuclear fission is a nuclear reaction in which the nucleus of an atom splits into smaller parts (lighter nuclei). The fission process often produces free neutrons and photons (in the form of gamma rays), and releases a large amount of energy. In nuclear physics, nuclear fission is either a nuclear reaction or a radioactive decay process. The case of decay process is called spontaneous fission and it is very rare process. In this section, the neutron-induced nuclear fission, the process of the greatest practical importance in reactor physics, will be discussed.
Fusion reactions between light elements, like fission reactions that split heavy elements, release energy because of a key feature of nuclear matter called the binding energy, which can be released through fusion or fission. The binding energy of the nucleus is a measure of the efficiency with which its constituent nucleons are bound together. Take, for example, an element with Z protons and N neutrons in its nucleus. The element’s atomic weight A is Z + N, and its atomic number is Z. The binding energy B is the energy associated with the mass difference between the Z protons and N neutrons considered separately and the nucleons bound together (Z + N) in a nucleus of mass M. The formula is
B = (Zmp + Nmn − M)c2.