Answer:
b. 760 g
Explanation:
The mass of the solution = 800 g
5% of NaCl by mass of the solution can be determined as follows;
5% of 800 =
× 800
= 5 × 8
= 40 g
The mass of NaCl in the solution is 40 g.
The mass of water = mass of solution - mass of NaCl
= 800 - 40
= 760 g
Therefore, the mass of water required is 760 g.
<em>Kinetic molecular Theory points:</em>
1. Gases molecules are always in random motion.
2. Gases molecule collide with each other and with the walls of container.
3. Gases molecules total volume is negligible as compare to container.
4. There is no attractive forces between the gases particles
5. K.E is directly proportional to absolute temperature.
<em>Why liquid are denser than gases according to K.M.T:</em>
1. As gases are in random motion, so they have weak forces/ no attractive forces (Acc. to KMT) due to this they are apart as compare to liquid which have stronger forces are closer to each other. So volume of gases will be greater. d= m/v
2. K. E of gases are greater than liquid due to this gases move randomly, apart from each another. Due to this their volume will be greater. d= m/v
3. Gases molecules total volume is negligible as compare to container which show that gases molecules have large spaces between them which causes lower in density.
Answer: HA + H2O ⇌ H3O+ + H- (option #4)
Explanation: Since the acid is weak you have to use a ⇌ (equilibrium) sign. Equilibrium is denoted in a chemical equation by the ⇌ symbol. Also, when any acid dissolves into water, it produces hydronium (H3O+ or H+). Therefore, the fourth chemical reaction is your answer.
1bonding and 3non-bonding
(Refer to the attachment for structure
Answer:
-179.06 kJ
Explanation:
Let's consider the following balanced reaction.
HCl(g) + NaOH(s) ⟶ NaCl(s) + H₂O(l)
We can calculate the standard enthalpy change for the reaction (ΔH°r) using the following expression.
ΔH°r = 1 mol × ΔH°f(NaCl(s)) + 1 mol × ΔH°f(H₂O(l)) - 1 mol × ΔH°f(HCl(g)) - 1 mol × ΔH°f(NaOH(s))
ΔH°r = 1 mol × (-411.15 kJ/mol) + 1 mol × (-285.83 kJ/mol) - 1 mol × (-92.31 kJ/mol) - 1 mol × (-425.61 kJ/mol)
ΔH°r = -179.06 kJ