Answer:
The range of atoms = (30-300 pm) depending upon the element
Explanation:
The Atomic radii of the atom is the distance from the center of the circle to the outermost orbital.
The center of the circle is the nucleus and the radii is the outermost boundary.
The actual size of the atom is decided on the basis of the Zeff . Also known as <em>effective nuclear charge.</em>
<em>Zeff: It is the net positive charge felt by the outermost electron by the nucleus.</em>
<em>The value of Zeff depends upon the shielding constant. More the shielding less will be the Zeff . Hence the size of the atom increases.</em>
Due to shielding the outermost electrons feel less pull of nucleus.
<em>The greater the Zeff , the smaller the radius of the atom.</em>
The formula used to calculate the atomic mass is :
pm
Here "pm"= picometers

<u>The size of the smallest atom H-atom = 120 pm</u>
<u>The range of atoms = (30-300 pm)</u>
Radioactive material obeys 1st order decay kinetics,
For 1st order reaction, we have
k =

where, k = rate constant of reaction
Given: Initial conc. 100, Final conc. = 6.25, t = 18.9 hours
∴ k =

= 0.1467 hours^(-1)
Now, for 1st order reactions: half life =

= 4.723 hours.
Number of moles of the gas, Temperature and the volume of the gas.
Use the state equation for ideal gases: pV = nRT
Data:
V = 88.89 liter
n = 17 mol
T = 67 + 273.15 = 340.15 K
R = 0.0821 atm * liter / (K*mol)
=> p = nRT / V = 17 mol * 0.0821 (atm*liter / K*mol) * 340.15 K / 88.89 liter
p = 5.34 atm
Answer: p = 5.34 atm
Answer
not too sure, but perhaps, 24
Explanation:
1 mole = 12 apples
2 moles = 24 apples