Answer:
The wavelength of the waves created in the swimming pool is 0.4 m
Explanation:
Given;
frequency of the wave, f = 2 Hz
velocity of the wave, v = 0.8 m/s
The wavelength of the wave is given by;
λ = v / f
where;
λ is the wavelength
f is the frequency
v is the wavelength
λ = 0.8 / 2
λ = 0.4 m
Therefore, the wavelength of the waves created in the swimming pool is 0.4 m
Answer:
signal, opening and merge.
Explanation:
As motorists drive onto the acceleration lane, they must get up to the speed limit, signal, find an opening and then merge.
Acceleration lane explanation: an speed variation area or lane of adjustment consisting of additional flooring on the edges of traffic lanes to allow acceleration of vehicles until merging with traffic flow .
The initial mass fraction of the spacecraft that must be burned and ejected to achieve an increase in speed is 0,00219 m/s
<h3>What fraction of the initial mass of the spacecraft?</h3>
Increase the speed: Vf-Vi = 2.2 m/s
Speed of aircraft: Vr = 400 m/s
Speed of ejected products: Vrel = 1000 m/s
The answer is:


So, the initial mass fraction of the spacecraft that must be burned and ejected to achieve an increase in speed is 0,00219 m/s
Learn more about spaceship speed fraction brainly.com/question/28256735
#SPJ4
Answer:
F = - 2 A x - B
Explanation:
The force and potential energy are related by the expression
F = - dU / dx i ^ -dU / dy j ^ - dU / dz k ^
Where i ^, j ^, k ^ are the unit vectors on the x and z axis
The potential they give us is
U (x) = A x² + B x + C
Let's calculate the derivatives
dU / dx = A 2x + B + 0
The other derivatives are zero because the potential does not depend on these variables.
Let's calculate the strength
F = - 2 A x - B