Here, ball is released... and it is in free fall means with zero initial velocity.
We know, s = ut + 1/2 at²
Here, s = 1000 m
u = 0
a = 10 m/s2
Substitute their values,
1000 = 0 + 1/2 * 10 * t²
2000 = 10 * t²
t² = 2000 /10
t = √200
t = 14.14 s
In short, Your Answer would be 14.14 seconds
Hope this helps!
Answer:
No
Explanation:
Social media fame isnt worth it, because youre not really able to connect with people. Real life relationships with friends, family, and everything else is way more important. having people notice you or be attracted to you through the internet is nothing compared to real life social interactions. Dont leave people just to be online, youre going to regret it.
Answer:
<em>2.78m/s²</em>
Explanation:
Complete question:
<em>A box is placed on a 30° frictionless incline. What is the acceleration of the box as it slides down the incline when the co-efficient of friction is 0.25?</em>
According to Newton's second law of motion:

Where:
is the coefficient of friction
g is the acceleration due to gravity
Fm is the moving force acting on the body
Ff is the frictional force
m is the mass of the box
a is the acceleration'
Given

Required
acceleration of the box
Substitute the given parameters into the resulting expression above:
Recall that:

9.8sin30 - 0.25(9.8)cos30 = ax
9.8(0.5) - 0.25(9.8)(0.866) = ax
4.9 - 2.1217 = ax
ax = 2.78m/s²
<em>Hence the acceleration of the box as it slides down the incline is 2.78m/s²</em>
The energy of the wave will decrease.
The energy of a wave is given as
E = h f
where E = energy of waver
h = plank's constant
f = frequency of the wave.
From the formula , we see that the energy of the wave is directly proportional to the frequency of the wave. hence as the frequency of the wave decrease, the energy of the wave will decrease.