To calculate MA = force needed/force used
Example
MA = 60/30 = 2
The mechanical advantage is 2
<u>ALL of the following work assumes NO AIR RESISTANCE:</u>
1). an object moving under the influence of only gravity, and not in orbit; its horizontal velocity is constant, and its vertical motion is accelerated downward at 9.8 m/s²
2). a parabola
3). Horizontal: velocity is constant, acceleration is zero. . . . Vertical: acceleration is 9.8 m/s² downward, velocity depends on whether it was launched, thrown up, thrown down, dropped, etc.
4). a). the one that was thrown horizontally; b). both hit the ground at the same time; c). both hit the ground with the same vertical velocity
5). a). zero; b). zero; c). gravity ... 9.8 m/s² down; d). 3.06 seconds; e). 4.38 m/s; f). 30 m/s g). no; gravity has no effect on horizontal motion
6). a). 1.8 seconds; b). 13.1 meters; c). 17.6 m/s down; d). 7.3 m/s; gravity has no effect on horizontal motion
7). 45 m/s
8). without air resistance, the ball is traveling horizontally at 13 km/hr, and it lands back in your hand
9). a). 4.49 m/s; b). 29.7 m/s
10). 7.24 meters
11). 700 meters
12). A). 103.7 meters ( ! she's in big trouble ! ); B). 17.5 meters
Answer:
They will sometimes crash into other plates in the process and will rub while they are moving creating earthquakes
Explanation:
Answer:

Explanation:
Given:
Solute Diffusion rate = 4.0 × 10⁻¹¹ kg/s
Area of cross-section = 0.50 cm²
Length of channel =0.25 cm
Now for the new channel
Area of cross-section = 0.30 cm²
Length of channel =0.10 cm
let the Solute Diffusion rate of new channel = s
now equating the diffusion rate per unit volume for both the channels

thus,

Explanation:
We'll need two equations.
v² = v₀² + 2a(x - x₀)
where v is the final velocity, v₀ is the initial velocity, a is the acceleration, x is the final position, and x₀ is the initial position.
x = x₀ + ½ (v + v₀)t
where t is time.
Given:
v = 47.5 m/s
v₀ = 34.3 m/s
x - x₀ = 40100 m
Find: a and t
(47.5)² = (34.3)² + 2a(40100)
a = 0.0135 m/s²
40100 = ½ (47.5 + 34.3)t
t = 980 s