1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
PSYCHO15rus [73]
2 years ago
6

The concentration of water vapor in the atmosphere known as

Physics
1 answer:
MArishka [77]2 years ago
8 0
The amount of water vapor in the air is called absolute humidity.
You might be interested in
If the emf produced in a wire is 0.88 volts and the wire moves perpendicular to a magnetic field of strength 0.075 newtons/amper
Elza [17]
Emf = d (phi-B) / dt 
<span>B dA/dt, where dA/dt is the area swept out by the wire per unit time. </span>
<span>0.88 V = (0.075 N/(A m)) (L)(4.20 m/s), so </span>
<span>L = (0.88 J/C) / [ (0.075 N s/C m)(4.2 m/s) ] = about 3 meters</span>
6 0
2 years ago
Read 2 more answers
An object with total mass mtotal = 14.6 kg is sitting at rest when it explodes into three pieces. One piece with mass m1 = 4.9 k
zheka24 [161]

Answer: 1) 0. 2) 4.2 Kg. 3) 15.4 m/s 4) 12.9 m/s 5) 0. 6) 3.62 KJ.

Explanation:

1) Assuming that no external forces act during the collision, total momentum must be conserved. As initially the total mass was at rest, so initial momentum is zero, final momentum of all the system must be 0 also.

2) After the explosion, as mass must be conserved also, the sum of the masses of the three pieces must be equal to the original total mass, so we can write the following:

m₁ + m₂ + m₃ = M = 14.6 Kg = 4.9 Kg + 5.5 Kg + m₃

Solving for m₃, we have:

m₃ = 14.6 Kg - 4.9 Kg -5.5 Kg = 4.2 Kg.

3) and 4)

As momentum is a vector, if it is magnitude must be 0, this means that all his components must be 0 too.

So, we can write two equations, one for the x-component, and other for the y-component, as follows:

pₓ = m₁. v₁ₓ + m₂.v₂ₓ + m₃.v₃ₓ = 0

py = m₁.v₁y + m₂. v₂y + m₃. v₃y =0

Replacing by the values, and solving for v₃ₓ and v₃y, we get:

v₃ₓ = 15.4 m/s

v₃y = 12.9 m/s

v = √(15.4)²+(12.9)² = 20.1 m/s

5) As the center of mass must move as if all the mass were concentrated in this point, and we know that the total momentum must be 0, this tells us that the magnitude of the velocity of the center of mass must be 0 too.

6) As initial kinetic energy is 0, as  the mass was at rest, the increase in the kinetic energy is obtained simply adding the kinetic energy of every piece of mass gained after explosion, as follows:

K = K₁ + K₂ + K₃ = 1/2 (m₁ . v₁² + m₂.v₂² + m₃.v₃²)

Replacing by the values, we get:

K= 3.62 KJ

4 0
2 years ago
The train passes point A with a speed of 30 m/s and begins to decrease its speed at a constant rate of at = - 0.25 m/s^2. Determ
prisoha [69]

Explanation:

At point B, the velocity speed of the train is as follows.

          \nu^{2}_{B} = \nu^{2}_{A} + 2a_{t} (s_{B} - s_{A})

                           = (30)^{2} + 2(-0.25(412 - 0))

                           = 26.34 m/s

Now, we will calculate the first derivative of the equation of train.

          y = 200 e^{\frac{x}{1000}}

      \frac{dy}{dx} = 0.2 e^{\frac{x}{1000}}

Now, second derivative of the train is calculated as follows.

         \frac{dy}{dx} = 0.2 e^{\frac{x}{1000}}      

       \frac{d^{2}y}{dx^{2}} = 0.2 (10^{-3}) e^{\frac{x}{1000}}    

Radius of curvature of the train is as follows.  

   \rho = \frac{[1 + (\frac{dy}{dx})^{2}]^{\frac{3}{2}}}{\frac{d^{2}y}{dx^{2}}}

               = \frac{[1 + 0.2e^{\frac{400}{1000}}^{2}]^{\frac{3}{2}}}{0.2(10^{-3})e^{\frac{400}{1000}}}

              = 3808.96 m

Now, we will calculate the normal component of the train as follows.

            a_{n} = \frac{\nu^{2}_{B}}{\rho}

                        = \frac{(26.34)^{2}}{3808.96}

                        = 0.1822 m/s^{2}

The magnitude of acceleration of train is calculated as follows.

            a = \sqrt{(a_{t})^{2} + (a_{n})^{2}}

               = \sqrt{(-0.25)^{2} + (0.1822)^{2}}

              = 0.309 m/s^{2}

Thus, we can conclude that magnitude of the acceleration of the train when it reaches point B, where sAB = 412 m is 0.309 m/s^{2}.

6 0
3 years ago
what is a hypothesis reffered to as after being verified by a large number or independent experiments
Iteru [2.4K]

Answer:

The hypothesis may or may not be true and needs to be tested. It might be the answer to the problem. Hence, it must be tested thoroughly. When these predictions are tested again and again in independent scientific experiments and gets verified, the hypothesis is converted into a scientific theory.

7 0
3 years ago
The electric field between two parallel plates is uniform, with magnitude 628 N/C. A proton is held stationary at the positive p
aliina [53]

Answer:

Answer is explained in the explanation section below.

Explanation:

Solution:

Data Given:

Electric Field between two parallel plates = 628 N/C

Separation = 4.22 cm

a) In this part, we are asked to calculate the distance from positive plate at which the electron and proton pass each other.

Solution:

First of all:

Force on proton due to the Electric field between the plates is:

F_{p} = q_{p}E

and, we know that, F = ma

So,

m_{p}a = q_{p}E

a = \frac{q_{p}.E }{m_{p} }      Equation 1

So,

The distance covered by the electron is:

S = ut + 1/2at^{2}

Here, u = 0.

S = 1/2at^{2}

Put equation 1 into the above equation:

S = 1/2 x (\frac{q_{p}.E }{m_{p} }  )t^{2}      Equation 2

So,  

Similarly, the distance covered by electron will be:

(D-S) = 1/2 x (\frac{q_{e}.E }{m_{e} }  )t^{2}    Equation 3

We know that the charge of electron is equal to the charge of proton so,

q_{p} = q_{e} = q

By dividing the equation 2 by equation 3, we get:

\frac{S}{D-S} = \frac{m_{e} }{m_{p} }

Solve the above equation for S,

Sm_{p} = m_{e}D - m_{e}S

So,

S = \frac{m_{e}.D }{(m_{e} + m_{p})  }

Plugging in the values,

As we know the mass of electron is 9.1 x 10^{-31} and the mass of proton is 1.67 x 10^{-27}

S = \frac{9.1 . 10^{-31} . 4.22 }{(9.1 . 10^{-31} + 1.67 . 10^{-27}  }

S = 0.002298 cm (Distance from the positive plate at which the two pass each other)

b) In this part, we to calculate distance for Sodium ion and chloride ion as above.

So,

we already have the equation, we need to put the values in it.

So,

S = \frac{m_{Cl}.D }{(m_{Cl} + m_{Na})  }

As we know the mass of chlorine is 35.5 and of sodium is 23

S = \frac{35.5 . 4.22}{(35.5 + 23)}

S = 2.56 cm

7 0
2 years ago
Other questions:
  • A child holds onto a string attached to a toy boat and exerts a force of 7.5 N to pull the boat a distance of 9.2 m a long a str
    9·1 answer
  • Which of these is a part of the biosphere? a. wind b. lakes c. bacteria d. glaciers
    7·2 answers
  • The process by which you group things based on their similarities is known as classifying.
    6·1 answer
  • If the brakes are applied and the speed of the car is reduced to 12 m/s in 15 s , determine the constant deceleration of the car
    13·1 answer
  • If an 83.00 g sample of Iron has a starting temperature of 297K and an ending temperature of 329K how much heat will be lost fro
    10·1 answer
  • Advantages of outsourcing project work may likely include all of the following EXCEPT:
    5·1 answer
  • Two astronauts of mass 100 kg are 2 m apart in outer space. What is the
    15·2 answers
  • How are the fiducial points of the Celsius and Fahrenheit scales similar?
    14·1 answer
  • What are the differences between balloon framing and platform framing? What are the advantages and disadvantages of each? Why ha
    6·1 answer
  • In the shadow of a tree with a dense, leafy canopy, one sees a number of light spots. Surprisingly, they all appear to be circul
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!