1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vampirchik [111]
2 years ago
8

A neutron star is as dense as Group of answer choices water the nucleus of an atom the center of the Earth our astronomy textboo

k a white dwarf star
Physics
1 answer:
AVprozaik [17]2 years ago
4 0

A neutron star is considered as dense as the nucleus of an atom, and it represents a special type of star.

<h3>What is a neutron star?</h3>

A neutron star is a special kind of star generated after the death of a giant star that produces a supernova.

These stars (neutron stars) have a diameter really small, e.g., an area of ten kilometers in diameter.

In conclusion, a neutron star is as dense as the nucleus of an atom, and it represents a special type of star.

Learn more about neutron stars here:

brainly.com/question/14926350

#SPJ1

You might be interested in
Two shuffleboard disks of equal mass, one orange and the other yellow, are involved in an elastic, glancing collision. The yello
denis-greek [22]

Answer:

The final speeds of the yellow and orange shuffleboard disks are 3.015 meters per second and 3.989 meters per second, respectively.

Explanation:

In this case, we see a two-dimension system formed by two shuffleboard disks, which do not experiment any effect from external forces, so that the Principle of Linear Momentum can be applied. The equations of equilibrium are respectively:

m_{Y}\cdot \vec v_{Y,o}+m_{O}\cdot \vec v_{O,o} = m_{Y}\cdot \vec v_{Y}+m_{O}\cdot \vec v_{O} (Eq. 1)

Where:

m_{Y}, m_{O} - Masses of the yellow and orange shuffleboard disks, measured in kilograms.

\vec v_{Y,o}, \vec v_{O,o} - Initial vectors velocity of the yellow and orange shuffleboard disks, measured in meters per second.

\vec v_{Y}, \vec v_{O} - Final vectors velocity of the yellow and orange shuffleboard disks, measured in meters per second.

If we know that m_{Y} = m_{O}, then the system is now reduced into this form:

\vec v_{Y,o}+\vec v_{O,o} = \vec v_{Y}+\vec v_{O} (Eq. 2)

Given that \vec v_{Y,o} = \left(0\,\frac{m}{s}, 0\,\frac{m}{s}\right), \vec v_{O,o} = \left(5\,\frac{m}{s}, 0\,\frac{m}{s}  \right), \vec v_{Y} = v_{Y}\cdot \left(\cos 52.92^{\circ},-\sin 52.92^{\circ}\right) and \vec v_{O} = v_{O}\cdot (\cos 37.08^{\circ},\sin 37.08^{\circ}), then we find these two equations of equilibrium:

x-Direction:

v_{Y}\cdot \cos 52.92^{\circ}+v_{O}\cdot \cos 37.08^{\circ} = 5\,\frac{m}{s} (Eq. 3)

y-Direction:

-v_{Y}\cdot \sin 52.92^{\circ}+v_{O}\cdot \sin 37.08^{\circ} = 0\,\frac{m}{s} (Eq. 4)

The solution of this system of linear equations is:

v_{Y} = 3.015\,\frac{m}{s} and v_{O} = 3.989\,\frac{m}{s}

The final speeds of the yellow and orange shuffleboard disks are 3.015 meters per second and 3.989 meters per second, respectively.

3 0
3 years ago
An explosive projectile is launched straight upward to a maximum height h. At its peak, it explodes, scattering particles in all
Varvara68 [4.7K]

Answer:

θ = tan⁻¹ (\frac{19.6 \ h}{v})

Explanation:

This problem must be solved using projectile launch ratios. Let's analyze the situation, the projectile explodes at the highest point, therefore we fear the height (i = h), the speed at this point is the same, but the direction changes, we are asked to find the smallest angle of the speed in the point of arrival with respect to the x-axis.

The speed at the arrival point (y = 0)

           v² = vₓ² + v_y²

Let's see how this angle changes, for two extreme values:

* The particle that falls from the point of explosion, in this case the speed is vertical

         v = v_y

the angle with the horizontal is 90º

* The particle leaves horizontally from the point of the explosion, the initial velocity is horizontal

         vₓ = v

the final velocity for y = 0

         v_f = vₓ² + v_y²

therefore the angle has a value greater than zero and less than 90º

As they ask for the smallest angle, we can see that we must solve the last case

the output velocity is horizontal vₓ = v

Let's find the velocity when it hits the ground y = 0, with y₀ = h

            v_{y}^2 = v_{oy}^2 - 2 g (y-y₀)

            v_{y}^2 = - 2g (0- y₀)

let's calculate

           v_{y}^2 = 2 9.8 h

         

we use trigonometry to find the angle

        tan θ = \frac{v_y}{v_x}

        θ = tan⁻¹ (\frac{v_y}{v_x})

let's calculate

         θ = tan⁻¹ (\frac{19.6 \ h}{v})

3 0
3 years ago
(DUE IN FIVE MINUTES, QUICK)
goldfiish [28.3K]

Answer:

Well you would be flouting out in space so it will change your weight a lot because you can't stop moving.

8 0
3 years ago
Read 2 more answers
What is air pressure?
Dmitry_Shevchenko [17]
Air Pressure is a force that is exerted onto your body by air molecules.
3 0
3 years ago
. An object has a position given by ~r(t) = [3.0 m − (4.00 m/s)t]ˆı + [6.0 m − (8.00 m/s2 )t 2 ]ˆ , where all quantities are in
kupik [55]

Answer:

(c) 16 m/s²

Explanation:

The position is r(t) = [3.0 \text{ m} - (4.00 \text{ m/s})t]\hat{i} + [6.0 \text{m} - (8.00 \text{ m/s}^2 )t^2 ]\hat{j}.

The velocity is the first time-derivative of <em>r(t).</em>

<em />v(t) = \dfrac{d}{dt}r(t) = -4.00\,\hat{i} -16t\,\hat{j}<em />

The acceleration is the first time-derivative of the velocity.

a(t) = \dfrac{d}{dt} v(t) = -16\hat{j}

Since <em>a(t)</em> does not have the variable <em>t</em>, it is constant. Hence, at any time,

a = -16\hat{j}

Its magnitude is 16 m/s².

4 0
3 years ago
Other questions:
  • Why are the Inner Planets composed mostly of rock and the Outer Planets<br> composed mostly of gas
    11·1 answer
  • Which describes the rotational motion of a planet?
    15·1 answer
  • Calculate how much an astronaut with mass of 90 kg would weigh while standing on the surface of Mars. The acceleration due to gr
    9·1 answer
  • What is the key characteristic for double displacement
    7·1 answer
  • a naturally occurring element has a melting point of 240°C and a boiling point of 300°C. A.identify the elements state of matter
    10·1 answer
  • What is the difference between three types of mechanical waves?
    15·2 answers
  • A steel rod has a length of 0.2 cm at 30 degrees C, what will be its length at 60 degrees C?
    11·1 answer
  • A 7.40-kg object initially has 347 J of gravitational potential energy. Then an elevator lifts the object a distance of 20.6 m a
    9·1 answer
  • An object of mass M is placed on a disk that can rotate. One end of a string is tied to the object while the other end of the st
    10·2 answers
  • When the same pole of a magnet face each other it will attract each other true or false?​
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!