Answer:
a.
![\displaystyle a(0 )=8.133\ m/s^2](https://tex.z-dn.net/?f=%5Cdisplaystyle%20a%280%20%29%3D8.133%5C%20m%2Fs%5E2)
![\displaystyle a(2)=2.05\ m/s^2](https://tex.z-dn.net/?f=%5Cdisplaystyle%20a%282%29%3D2.05%5C%20m%2Fs%5E2)
![\displaystyle a(4)=0.52\ m/s^2](https://tex.z-dn.net/?f=%5Cdisplaystyle%20a%284%29%3D0.52%5C%20m%2Fs%5E2)
b.![\displaystyle X(t)=11.81(t+1.45\ e^{-0.6887t})-17.15](https://tex.z-dn.net/?f=%5Cdisplaystyle%20X%28t%29%3D11.81%28t%2B1.45%5C%20e%5E%7B-0.6887t%7D%29-17.15)
c. ![t=9.9 \ sec](https://tex.z-dn.net/?f=t%3D9.9%20%5C%20sec)
Explanation:
Modeling With Functions
Careful measurements have produced a model of one sprinter's velocity at a given t, and it's is given by
![\displaystyle V(t)=a(1-e^{bt})](https://tex.z-dn.net/?f=%5Cdisplaystyle%20V%28t%29%3Da%281-e%5E%7Bbt%7D%29)
For Carl Lewis's run at the 1987 World Championships, the values of a and b are
![\displaystyle a=11.81\ ,\ b=-0.6887](https://tex.z-dn.net/?f=%5Cdisplaystyle%20a%3D11.81%5C%20%2C%5C%20b%3D-0.6887)
Please note we changed the value of b to negative to make the model have sense. Thus, the equation for the velocity is
![\displaystyle V(t)=11.81(1-e^{-0.6887t})](https://tex.z-dn.net/?f=%5Cdisplaystyle%20V%28t%29%3D11.81%281-e%5E%7B-0.6887t%7D%29)
a. What was Lewis's acceleration at t = 0 s, 2.00 s, and 4.00 s?
To compute the accelerations, we must find the function for a as the derivative of v
![\displaystyle a(t)=\frac{dv}{dt}=11.81(0.6887\ e^{0.6887t})](https://tex.z-dn.net/?f=%5Cdisplaystyle%20a%28t%29%3D%5Cfrac%7Bdv%7D%7Bdt%7D%3D11.81%280.6887%5C%20e%5E%7B0.6887t%7D%29)
![\displaystyle a(t)=8.133547\ e^{-0.6887t}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20a%28t%29%3D8.133547%5C%20e%5E%7B-0.6887t%7D)
For t=0
![\displaystyle a(0)=8.133547\ e^o](https://tex.z-dn.net/?f=%5Cdisplaystyle%20a%280%29%3D8.133547%5C%20e%5Eo)
![\displaystyle a(0 )=8.133\ m/s^2](https://tex.z-dn.net/?f=%5Cdisplaystyle%20a%280%20%29%3D8.133%5C%20m%2Fs%5E2)
For t=2
![\displaystyle a(2)=8.133547\ e^{-0.6887\times 2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20a%282%29%3D8.133547%5C%20e%5E%7B-0.6887%5Ctimes%202%7D)
![\displaystyle a(2)=2.05\ m/s^2](https://tex.z-dn.net/?f=%5Cdisplaystyle%20a%282%29%3D2.05%5C%20m%2Fs%5E2)
![\displaystyle a(4)=8.133547\ e^{-0.6887\times 4}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20a%284%29%3D8.133547%5C%20e%5E%7B-0.6887%5Ctimes%204%7D)
![\displaystyle a(4)=0.52\ m/s^2](https://tex.z-dn.net/?f=%5Cdisplaystyle%20a%284%29%3D0.52%5C%20m%2Fs%5E2)
b. Find an expression for the distance traveled at time t.
The distance is the integral of the velocity, thus
![\displaystyle X(t)=\int v(t)dt \int 11.81(1-e^{-0.6887t})dt=11.81(t+\frac{e^{-0.6887t}}{0.6887})+C](https://tex.z-dn.net/?f=%5Cdisplaystyle%20X%28t%29%3D%5Cint%20v%28t%29dt%20%5Cint%2011.81%281-e%5E%7B-0.6887t%7D%29dt%3D11.81%28t%2B%5Cfrac%7Be%5E%7B-0.6887t%7D%7D%7B0.6887%7D%29%2BC)
![\displaystyle X(t)=11.81(t+1.45201\ e^{-0.6887t})+C](https://tex.z-dn.net/?f=%5Cdisplaystyle%20X%28t%29%3D11.81%28t%2B1.45201%5C%20e%5E%7B-0.6887t%7D%29%2BC)
To find the value of C, we set X(0)=0, the sprinter starts from the origin of coordinates
![\displaystyle x(0)=0=>11.81\times1.45201+C=0](https://tex.z-dn.net/?f=%5Cdisplaystyle%20x%280%29%3D0%3D%3E11.81%5Ctimes1.45201%2BC%3D0)
Solving for C
![\displaystyle c=-17.1482\approx -17.15](https://tex.z-dn.net/?f=%5Cdisplaystyle%20c%3D-17.1482%5Capprox%20-17.15)
Now we complete the equation for the distance
![\displaystyle X(t)=11.81(t+1.45\ e^{-0.6887t})-17.15](https://tex.z-dn.net/?f=%5Cdisplaystyle%20X%28t%29%3D11.81%28t%2B1.45%5C%20e%5E%7B-0.6887t%7D%29-17.15)
c. Find the time Lewis needed to sprint 100.0 m.
The equation for the distance cannot be solved by algebraic procedures, but we can use approximations until we find a close value.
We are required to find the time at which the distance is 100 m, thus
![\displaystyle X(t)=100=>11.81(t+1.45\ e^{-0.6887t})-17.15=100](https://tex.z-dn.net/?f=%5Cdisplaystyle%20X%28t%29%3D100%3D%3E11.81%28t%2B1.45%5C%20e%5E%7B-0.6887t%7D%29-17.15%3D100)
Rearranging
![\displaystyle t+1.45\ e^{-0.6887t}=9.92](https://tex.z-dn.net/?f=%5Cdisplaystyle%20t%2B1.45%5C%20e%5E%7B-0.6887t%7D%3D9.92)
We define an auxiliary function f(t) to help us find the value of t.
![\displaystyle f(t)=t+1.45\ e^{-0.687t}-9.92](https://tex.z-dn.net/?f=%5Cdisplaystyle%20f%28t%29%3Dt%2B1.45%5C%20e%5E%7B-0.687t%7D-9.92)
Let's try for t=9 sec
![\displaystyle f(9)=9+1.45\ e^{-0.687\times 9}-9.92=-0.92](https://tex.z-dn.net/?f=%5Cdisplaystyle%20f%289%29%3D9%2B1.45%5C%20e%5E%7B-0.687%5Ctimes%209%7D-9.92%3D-0.92)
Now with t=9.9 sec
![\displaystyle f(9.9)=9.9+1.45\ e^{-0.687\times 9.9}-9.92=-0.0184](https://tex.z-dn.net/?f=%5Cdisplaystyle%20f%289.9%29%3D9.9%2B1.45%5C%20e%5E%7B-0.687%5Ctimes%209.9%7D-9.92%3D-0.0184)
That was a real close guess. One more to be sure for t=10 sec
![\displaystyle f(10)=10+1.45\ e^{-0.687\times 10}-9.92=0.081](https://tex.z-dn.net/?f=%5Cdisplaystyle%20f%2810%29%3D10%2B1.45%5C%20e%5E%7B-0.687%5Ctimes%2010%7D-9.92%3D0.081)
The change of sign tells us we are close enough to the solution. We choose the time that produces a smaller magnitude for f(t).
![At t\approx 9.9\ sec, \text{ Lewis sprinted 100 m}](https://tex.z-dn.net/?f=At%20t%5Capprox%209.9%5C%20sec%2C%20%5Ctext%7B%20Lewis%20sprinted%20100%20m%7D)